九年级数学上学期期末试卷
我们的数学是可以在我们的生活帮助我们很多东西的,今天小编就给大家来分享一下九年级数学,希望大家一起阅读哦
初三九年级数学上学期期末试卷
一、选择题(本大题共 6 题,每小题 4 分)
1. 下列图形中,一定相似的是( )
A. 两个正方形 B. 两个菱形 C. 两个直角三角形 D. 两个等腰三角形
2. 如图,已知
AB CD EF / / / / ,它们依次交直线 于点A 、D 、F和点B 、C 、E ,如果
AD DF : 3:1 , BE 10,那么CE等于( )
3. 在 RtABC中, C 90 ,如果 A BC , ,那么AC等于( )
A.
atan
B.
acot
C.
asin
D.
acos
4. 下列判断错误的是( )
A.
0 0 a
B. 如果
a b c 2 , a b c 3 ,其中
c 0,那么
a b //
C. 设
e
为单位向量,那么
e 1
D. 如果
a b 2 ,那么
a b 2
或
a b 2
5. 如图,已知
ABC ,D 、E
分别在边
AB 、AC
上,下列条件中,不能确定
ADE ∽ ACB
的是( )
A.
AED B
B.
BDE C 180
C.
AD BC AC DE
D.
AD AB AE AC
6. 已知二次函数
2
y ax bx c
的图像如图所示,那么下列结论中正确的是( )
A.
ac 0
B.
b 0
C.
a c 0
D.
abc 0
二、填空题(本大题共 12 题,每小题 4 分)
7. 如果
____________.
8. 计算:3 2 2 3 a b a b ____________.
9. 如果两个相似三角形的相似比为 1:3,那么它们的周长比为____________.
10. 二次函数
2
y x x 4 1
的图像的顶点坐标是____________.
11. 抛物线
2
y x mx m 3
的对称轴是直线
x 1,那么
m ____________.
12. 抛物线
2
y x 2
在
y
轴右侧的部分是____________.(填“上升”或“下降”)
13. 如果
是锐角,且
sin cos20 ,那么
____________度.
14. 如图,某水库大坝的横断面是梯形
ABCD,坝高为 15 米,迎水坡
CD
的坡度为 1:2.4,那么该
水库迎水坡
CD
的长度为____________米.
15. 如图,在边长相同的小正方形组成的网格中,点
A 、 B 、C
都在这些小正方形的顶点上,则
tanABC
的值为____________.
16. 在
ABC
中, AB AC ,高
AH
与中线
BD
相交于点
E ,如果
BC BD 2, 3,那么
AE
____________.
17. 如图,在 Rt
ABC
中, ACB AC CAB 90 , 1,tan 2 ,将
ABC
绕点
A
旋转后,点
B
落在 AC 的延长线上的点 D ,点 C 落在点 E , DE 与直线 BC 相交于点 F ,那么 CF
____________.
18. 对于封闭的平面图形,如果图形上或图形内的点
S
到图形上的任意一点
P
之间的线段都在图
形内或图形上,那么这样的点
S
称为“亮点”.如图,对于封闭图形
ABCDE , 1 S
是“亮点”,
2 S
不是“亮点”,如果
AB DE AE DC / / , / / ,AB AE 2, 1, B C 60 ,那么该图形中所有
“亮点”组成的图形的面积为____________.
三、解答题(本大题共 7 题,满分 78 分)
19. (本题满分 10 分)
计算:
1
2
1
sin30 1 cot 30 3 tan30
cos 45
.
20. (本题满分 10 分,第(1)题 5 分,第(2)题 5 分)
如图,在平行四边形
ABCD
中,点
E
在边
BC
上,CE BE 2 , AC 、 DE
相交于点
F .
(1)求
DF EF :
的值;
(2)如果
CB a CD b
, ,试用
a 、b
表示向量
EF .
21. (本题满分 10 分,第(1)题 5 分, 第(2)题 5 分)
如图,在
ABC
中,点
D 、 E
分别在边
AB 、 AC
上,
2 AE AD AB ABE ACB , .
(1)求证:
DE BC / /
;
(2)如果
: 1:8 ADE DBCE S S四边形
,求
: ADE BDE S S
的值.
22. (本题满分 10 分)
如图,在港口
A
的南偏东 37°方向的海面上,有一巡逻艇
B , A 、 B
相距 20 海里,这时在巡
逻艇的正北方向及港口
A
的北偏东 67°方向上,有一渔船
C
发生故障.得知这一情况后,巡逻艇以
25 海里/小时的速度前往救援,问巡逻艇能否在 1 小时内到达渔船
C
处?
(参考数据:
12 5 sin37 0.60,cos37 0.80, tan37 0.75,sin 67 ,cos67 ,
13 13
12 tan 67
5
)
23. (本题满分 12 分,第(1)题 7 分,第(2)题 5 分)
已知:如图,在
ABC
中,点
D 、E
分别在边
BC 、AC
上,点
F
在
DE
的延长线上,AD AF ,
AE CE DE EF .
(1)求证:
ADE ∽ ACD
;
(2)如果
AE BD EF AF ,求证: AB AC .
24. (本题满分 12 分,第(1)题 3 分,第(2)题 5 分,第(3)题 4 分)
在平面直角坐标系
xOy
中,将抛物线
2
y x
平移后经过点
A1,0 、B4,0 ,且平移后的
抛物线与
y
轴交于点
C
(如图).
(1)求平移后的抛物线的表达式;
(2)如果点
D
在线段
CB
上,且
CD 2 ,求
CAD
的正弦值;
(3)点
E
在
y
轴上且位于点
C
的上方,点
P
在直线
BC
上,点
Q
在平移后的抛物线上,如果四边
形
ECPQ
是菱形,求点
Q
的坐标.
25. (本题满分 14 分,第(1)题 4 分,第(2)题 6 分, 第(3)题 4 分)
如图,在梯形
ABCD
中,AD BC BC DB DC / / , 18, 15 ,点
E 、F
分别在线段
BD、CD
上, DE DF 5. AE
的延长线交边
BC
于点
G , AF
交
BD
于点
N 、其延长线交
BC
的延长
线于点
H .
(1)求证:
BG CH
;
(2)设
AD x , ADN
的面积为
y ,求
y
关于
x
的函数解析式,并写出它的定义域;
(3)联结
FG ,当
HFG
与
ADN
相似时,求
AD
的长.
参考答案
1-6、ACDDCD
7、
2
3
8、a 9、1:3 10、2, 5 11、2
12、上升 13、70 14、39 15、
1
2
16、2 3
17、
1
2
18、
3
4
19、 3
20、(1)
3: 2
;(2)
4 2
15 5
a b
21、(1)证明略;(2)
1: 2
22、 BC 21 25,能
23、(1)证明略;(2)证明略;
24、(1)
2
y x x 3 4
;(2)
5 221 sin
221
CAD
;(3)
4 2,5 2 2
25、(1)证明略;(2)
九年级数学上期末试卷阅读
一.选择题(共16小题)
1.下列方程是一元二次方程的是( )
A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6
2.方程x2﹣2x﹣3=0经过配方法化为(x+a)2=b的形式,正确的是( )
A.(x﹣1)2=4 B.(x+1)4 C.(x﹣1)2=16 D.(x+1)2=16
3.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( )
A.事件A、B都是随机事件
B.事件A、B都是必然事件
C.事件A是随机事件,事件B是必然事件
D.事件A是必然事件,事件B是随机事件
4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )
A. B. C. D.
5.下列关系式中,属于二次函数的是(x是自变量)( )
A.y= B.y= C.y= D.y=ax2+bx+c
6.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有( )
A.1个 B.2个 C.3个 D.4个
7.二次函数图象上部分点的坐标对应值列表如下:
x … ﹣3 ﹣2 ﹣1 0 1 …
y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …
则该函数图象的对称轴是( )
A.x=﹣3 B.x=﹣2 C.x=﹣1 D.x=0
8.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是( )
A.相离 B.相交 C.相切 D.外切
9.如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE是( )
A.40° B.60° C.80° D.120°
10.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为( )
A.r B.2r C. r D.3r
11.已知反比例函数y=﹣,下列结论中不正确的是( )
A.图象必经过点(﹣3,2)
B.图象位于第二、四象限
C.若x<﹣2,则0
D.在每一个象限内,y随x值的增大而减小
12.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为( )
A.2 B.2 C. D.2
13.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应角平分线之比为( )
A.3:4 B.2:3 C.9:16 D.3:2
14.如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在平面内,可作为旋转中心的点个数( )
A.1个 B.2个 C.3个 D.4个
15.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
16.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=4,BC的中点为D.将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是( )
A.4 B.6 C.2+2 D.8
二.填空题(共3小题)
17.关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a、b的值:a= ,b= .
18.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为 .
19.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于8cm,则PA= cm;已知⊙O的直径是6cm,PO= cm.
三.解答题(共7小题)
20.定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.
21.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是.
(1)试写出y与x的函数解析式;
(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为,求x与y的值.
22.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函数的解析式和△AOB的面积.
(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案) .
23.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
24.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.
(1)求证:△ADF∽△ACG;
(2)若=,求的值.
25.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
26.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
2018-2019学年河北省保定市博野县九年级(上)期末数学试卷
参考答案与试题解析
一.选择题(共16小题)
1.下列方程是一元二次方程的是( )
A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6
【分析】利用一元二次方程的定义判断即可.
【解答】解:A、x2﹣y=1是二元二次方程,不合题意;
B、x2+2x﹣3=0是一元二次方程,符合题意;
C、x2+=3不是整式方程,不合题意;
D、x﹣5y=6是二元一次方程,不合题意,
故选:B.
【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.
2.方程x2﹣2x﹣3=0经过配方法化为(x+a)2=b的形式,正确的是( )
A.(x﹣1)2=4 B.(x+1)4 C.(x﹣1)2=16 D.(x+1)2=16
【分析】根据配方法即可求出答案.
【解答】解:x2﹣2x+1﹣1﹣3=0,
(x﹣1)2=4,
故选:A.
【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.
3.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( )
A.事件A、B都是随机事件
B.事件A、B都是必然事件
C.事件A是随机事件,事件B是必然事件
D.事件A是必然事件,事件B是随机事件
【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.首先判断两个事件是必然事件、随机事件,然后找到正确的答案.
【解答】解:事件A、一年最多有366天,所以367人中必有2人的生日相同,是必然事件;
事件B、抛掷一枚均匀的骰子,朝上的面点数为1、2、3、4、5、6共6种情况,点数为偶数是随机事件.
故选:D.
【点评】该题考查的是对必然事件的概念的理解;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )
A. B. C. D.
【分析】只有闭合两条线路里的两个才能形成通路.列举出所有情况,看所求的情况占总情况的多少即可.
【解答】解:列表得:
(a,e) (b,e) (c,e) (d,e) ﹣
(a,d) (b,d) (c,d) ﹣ (e,d)
(a,c) (b,c) ﹣ (d,c) (e,c)
(a,b) ﹣ (c,b) (d,b) (e,b)
﹣ (b,a) (c,a) (d,a) (e,a)
∴一共有20种情况,使电路形成通路的有12种情况,
∴使电路形成通路的概率是=,
故选:C.
【点评】本题结合初中物理的“电路”考查了有关概率的知识.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
5.下列关系式中,属于二次函数的是(x是自变量)( )
A.y= B.y= C.y= D.y=ax2+bx+c
【分析】根据函数y=ax2+bx+c (a≠0)是二次函数,可得答案.
【解答】解:A、是二次函数,故A正确;
B、不是二次函数的形式,故B错误;
C、是分式,故C错误;
D、a=0是一次函数,故D错误;
故选:A.
【点评】本题考查了二次函数的定义,函数y=ax2+bx+c (a≠0)是二次函数,注意y=ax2+bx+c 是二次函数a不等于零.
6.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【分析】函数是一种最基本的二次函数,画出图象,直接判断.
【解答】解:①二次函数的图象是抛物线,正确;
②因为a=﹣<0,抛物线开口向下,正确;
③因为b=0,对称轴是y轴,正确;
④顶点(0,0)也正确.
故选:D.
【点评】本题考查了抛物线y=ax2的性质:①图象是一条抛物线;②开口方向与a有关;③对称轴是y轴;④顶点(0,0).
7.二次函数图象上部分点的坐标对应值列表如下:
x … ﹣3 ﹣2 ﹣1 0 1 …
y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …
则该函数图象的对称轴是( )
A.x=﹣3 B.x=﹣2 C.x=﹣1 D.x=0
【分析】由当x=﹣3与x=﹣1时y值相等,利用二次函数图象的对称性即可求出二次函数图象的对称轴为直线x=﹣2,此题得解.
【解答】解:∵当x=﹣3与x=﹣1时,y值相等,
∴二次函数图象的对称轴为直线x==﹣2.
故选:B.
【点评】本题考查了二次函数的性质,利用二次函数图象的对称性找出其对称轴是解题的关键.
8.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是( )
A.相离 B.相交 C.相切 D.外切
【分析】求出⊙O的半径,和圆心O到直线l的距离5比较即可.
【解答】解:∵⊙O的直径是10,
∴⊙O的半径r=5,
∵圆心O到直线l的距离d是5,
∴r=d,
∴直线l和⊙O的位置关系是相切,
故选:C.
【点评】本题考查了直线与圆的位置关系的应用,注意:当圆心到直线的距离等于圆的半径时,直线与圆相切.
9.如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE是( )
A.40° B.60° C.80° D.120°
【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.
【解答】解:∵∠AOE=60°,
∴∠BOE=180°﹣∠AOE=120°,
∴的度数是120°,
∵C、D是上的三等分点,
∴弧CD与弧ED的度数都是40度,
∴∠COE=80°.
故选:C.
【点评】本题利用了邻补角的概念和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
10.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为( )
A.r B.2r C. r D.3r
【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.
【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.
设圆锥的母线长为R,则=2πr,
解得:R=3r.
根据勾股定理得圆锥的高为2r,
故选:B.
【点评】本题主要考查圆锥侧面面积的计算,正确理解圆的周长就是扇形的弧长是解题的关键.
11.已知反比例函数y=﹣,下列结论中不正确的是( )
A.图象必经过点(﹣3,2)
B.图象位于第二、四象限
C.若x<﹣2,则0
D.在每一个象限内,y随x值的增大而减小
【分析】根据反比例函数的性质进行选择即可.
【解答】解:A、图象必经过点(﹣3,2),故A正确;
B、图象位于第二、四象限,故B正确;
C、若x<﹣2,则y<3,故C正确;
D、在每一个象限内,y随x值的增大而增大,故D正确;
故选:D.
【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.
12.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为( )
A.2 B.2 C. D.2
【分析】过D作DE⊥OA于E,设D(a,),于是得到OA=2a,OC=,根据矩形的面积列方程即可得到结论.
【解答】解:如图,过D作DE⊥OA于E,
设D(a,),
∴OE=a.DE=,
∵点D是矩形OABC的对角线AC的中点,
∴OA=2a,OC=,
∵矩形OABC的面积为8,
∴OA•OC=2a•=8,
∴k=2,
故选:A.
【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.
13.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应角平分线之比为( )
A.3:4 B.2:3 C.9:16 D.3:2
【分析】根据相似三角形的性质求出相似比,得到对应角的角平分线之比.
【解答】解:∵△ABC∽△DEF,△ABC与△DEF的面积比为9:4,
∴△ABC与△DEF的相似比为3:2,
∴△ABC与△DEF对应角的角平分线之比为3:2,
故选:D.
【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
14.如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在平面内,可作为旋转中心的点个数( )
A.1个 B.2个 C.3个 D.4个
【分析】分别以C,D,CD的中点为旋转中心进行旋转,都可以使正方形ABCD旋转后能与正方形CDEF重合.
【解答】解:以C为旋转中心,把正方形ABCD顺时针旋转90°,可得到正方形CDEF;
以D为旋转中心,把正方形ABCD逆时针旋转90°,可得到正方形CDEF;
以CD的中点为旋转中心,把正方形ABCD旋转180°,可得到正方形CDEF;
故选:C.
【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
15.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
【解答】解:依题意,在矩形ABDC中截取矩形ABFE,
则矩形ABDC∽矩形FDCE,
则,
设DF=xcm,得到:
解得:x=4.5,
则剩下的矩形面积是:4.5×6=27cm2.
故选:B.
【点评】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
16.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=4,BC的中点为D.将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是( )
A.4 B.6 C.2+2 D.8
【分析】解直角三角形求出AB、BC,再求出CD,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG,然后根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.
【解答】解:∵∠ACB=90°,∠A=30°,
∴AB=AC÷cos30°=4÷=8,
BC=AC•tan30°=4×=4,
∵BC的中点为D,
∴CD=BC=×4=2,
连接CG,∵△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,
∴CG=EF=AB=×8=4,
由三角形的三边关系得,CD+CG>DG,
∴D、C、G三点共线时DG有最大值,
此时DG=CD+CG=2+4=6.
故选:B.
【点评】本题考查了旋转的性质,解直角三角形,直角三角形斜边上的中线等于斜边的一半的性质,根据三角形的三边关系判断出DG取最大值时是解题的关键.
二.填空题(共3小题)
17.关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a、b的值:a= 1 ,b= 2 .
【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根;进而得出答案.
【解答】解:∵关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,
∴△=b2﹣4ac=b2﹣4a=0,
符合一组满足条件的实数a、b的值:a=1,b=2等.
故答案为:1,2.
【点评】此题主要考查了根的判别式,正确求出a,b之间的关系是解题关键.
18.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为 (,2)或(﹣,2) .
【分析】当⊙P与x轴相切时,点P的纵坐标是2或﹣2,把点P的坐标坐标代入函数解析式,即可求得相应的横坐标.
【解答】解:依题意,可设P(x,2)或P(x,﹣2).
①当P的坐标是(x,2)时,将其代入y=x2﹣1,得
2=x2﹣1,
解得x=±,
此时P(,2)或(﹣,2);
②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得
﹣2=x2﹣1,即﹣1=x2
无解.
综上所述,符合条件的点P的坐标是(,2)或(﹣,2);
故答案是:(,2)或(﹣,2).
【点评】本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.
19.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于8cm,则PA= 4 cm;已知⊙O的直径是6cm,PO= 5 cm.
【分析】根据切线长定理可得DA=DE,BC=CE,PA=PB,根据△PCD的周长为PD+PC+DE+CE=PA+PB=8cm,可求PA的长,根据勾股定理可求OP的长.
【解答】解:∵PA,PB,CD是⊙O的切线
∴DA=DE,BC=CE,PA=PB,
∵△PCD的周长等于8cm,
∴PD+PC+CD=8cm
∴PD+PC+DE+CE=PA+PB=8cm
∴PA=4cm
连接OA,
∵PA=4cm,OA=3cm,
∴OP==5cm
故答案为:4,5
【点评】本题考查了切线的性质,切线长定理,勾股定理,熟练运用切线长定理是本题的关键.
三.解答题(共7小题)
20.定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.
【分析】根据2☆a的值小于0结合新运算可得出关于a的一元一次不等式,解不等式可得出a的取值范围,再由根的判别式得出△=(﹣b)2﹣8a,结合a的取值范围即可得知△的正负,由此即可得出结论.
【解答】解:∵2☆a的值小于0,
∴22a+a=5a<0,解得:a<0.
在方程2x2﹣bx+a=0中,
△=(﹣b)2﹣8a≥﹣8a>0,
∴方程2x2﹣bx+a=0有两个不相等的实数根.
【点评】本题考查了根的判别式以及新运算,解题的关键是找出△>0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的正负确定根的个数是关键.
21.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是.
(1)试写出y与x的函数解析式;
(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为,求x与y的值.
【分析】(1)根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有=成立.化简可得y与x的函数关系式;
(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,然后求出x,y的值即可.
【解答】解:(1)由题意得=,
解得:y=x,
答:y与x的函数解析式是y=x;
(2)根据题意,可得,
解方程组可求得:,
则x的值是15,y的值是25.
【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
22.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).
(1)填空:m= ﹣3 ,n= 1 .
(2)求一次函数的解析式和△AOB的面积.
(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案) ﹣3≤x≤﹣1 .
【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值
(2)用待定系数法可求一次函数解析式,根据S△AOB=S△AOC﹣S△BOC可求△AOB的面积.
(3)由图象直接可得
【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)
∴m=3×(﹣1)=﹣3,m=﹣3n
∴n=1
故答案为﹣3,1
(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)
∴
解得:
∴解析式y=x+4
∵一次函数图象与x轴交点为C
∴0=x+4
∴x=﹣4
∴C(﹣4,0)
∵S△AOB=S△AOC﹣S△BOC
∴S△AOB=×4×3﹣×4×1=4
(3)∵kx+b≥
∴一次函数图象在反比例函数图象上方
∴﹣3≤x≤﹣1
故答案为﹣3≤x≤﹣1
【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.
23.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
【解答】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥BC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,
∵,
∴△BDE≌△BCE(SAS);
(2)四边形ABED为菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋转而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴四边形ABED为菱形.
【点评】本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.
24.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.
(1)求证:△ADF∽△ACG;
(2)若=,求的值.
【分析】(1)由∠AED=∠B、∠DAE=∠CAB利用三角形内角和定理可得出∠ADF=∠C,结合=,即可证出△ADF∽△ACG;
(2)根据相似三角形的性质可得出=,由=可得出=,再结合FG=AG﹣AF即可求出的值.
【解答】(1)证明:∵∠AED=∠B,∠DAE=∠CAB,
∴∠ADF=∠C.
又∵=,
∴△ADF∽△ACG.
(2)∵△ADF∽△ACG,
∴=.
∵=,
∴=,
∴==1.
【点评】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟记相似三角形的判定定理与性质定理是解题的关键.
25.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
【分析】(1)由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ABC的度数;
(2)由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,则可得AE是⊙O的切线;
(3)首先连接OC,易得△OBC是等边三角形,则可得∠AOC=120°,由弧长公式,即可求得劣弧AC的长.
【解答】解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵∠ABC=60°,
∴∠AOC=120°,
∴劣弧AC的长为.
【点评】此题考查了切线的判定、圆周角定理以及弧长公式等知识.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.
26.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
【分析】(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=﹣求出对称轴方程;
(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;
(3)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.
【解答】解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),
∴﹣×(﹣2)2+b×(﹣2)+4=0,
解得:b=,
∴抛物线解析式为 y=﹣x2+x+4,
又∵y=﹣x2+x+4=﹣(x﹣3)2+,
∴对称轴方程为:x=3.
(2)在y=﹣x2+x+4中,令x=0,得y=4,
∴C(0,4);
令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,
解得:x=8或x=﹣2,
∴A(﹣2,0),B(8,0).
设直线BC的解析式为y=kx+b,
把B(8,0),C(0,4)的坐标分别代入解析式,得:
,
解得:,
∴直线BC的解析式为:y=﹣x+4.
(3)存在,
理由:∵抛物线的对称轴方程为:x=3,
可设点Q(3,t),∵A(﹣2,0),C(0,4),
∴AC=2,AQ=,CQ=.
①当AQ=CQ时,
有=,
25+t2=t2﹣8t+16+9,
解得t=0,
∴Q1(3,0);
②当AC=AQ时,
有2=,
∴t2=﹣5,此方程无实数根,
∴此时△ACQ不能构成等腰三角形;
③当AC=CQ时,
有2=,
整理得:t2﹣8t+5=0,
解得:t=4±,
∴点Q坐标为:Q2(3,4+),Q3(3,4﹣).
综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣).
【点评】此题是二次函数综合题,主要考查了二次函数与一次函数的图象与性质、待定系数法、勾股定理、等腰三角形的判定等知识点.难点在于第(3)问,符合条件的等腰三角形△ACQ可能有多种情形,需要分类讨论.
关于九年级数学上学期期末试卷
一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)
1.抛物线y=(x﹣1)2+2的顶点坐标是 ( )
A.(1,2) B.(1.-2) C.(-1.2) D.(-1.-2)
2.一元二次方程x2=2x的根是 ( )
A.x=2 B.x=0 C.x¬1=0,x2=2 D.x1=0,x2=-2
3.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是 ( )
A.r < 6 B.r > 6 C.r ≥ 6 D.r ≤ 6
4.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为 ( )
A.7sin35° B. C.7cos35° D.7tan35°
5.在比例尺是1∶8000的地图上,中山路的长度约为25cm,该路段实际长度约为( )
A.3200 m B.3000 m C.2 400 m D.2 000 m
6.如图,点A、B、C均在⊙O上,若∠ABC=40°,则∠AOC的大小是( )
A.90° B.80° C.70° D.50°
7.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是 ( )
A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2
8.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为 ( )
A. B. C. D.
9.若点 , , 都在抛物线 上,则下列结论正确的是( )
A. B.
C. D.
10.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2022个正方形(正方形ABCD看作第1个)的面积为 ( )
A.5 ( )2020 B.5 ( )2022
C.5 ( )2021 D.5 ( )2022
二、填空题(每题2分,共16分)
11. 若 = ,则 的值为 .
12.若一组数据1,2,x,4的众数是1,则这组数据的方差为 .
13. 将函数y=﹣2x2的图象沿着x轴向右平移3个单位后所得到的图象的函数表达式为 .
14.已知关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是 .
15.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧 的长度为 .
16.小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为 .
17.如图,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E处,则线段AE的长为 .
18.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为 .
三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤) .
19.解方程:(每题4分,共8分)(1) x2-8x+6=0 (2) 2(x-1)2=3x-3
20.计算(每小题4分,共8分)
(1)﹣ +|1﹣4sin60°|; (2) .
21.(本题满分8分)如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1).
(1) 请在网格图形中画出平面直角坐标系;
(2) 以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;
(3) 写出△A′B′C′各顶点的坐标:A′_______,B′________,
C′________;
(4) 写出△A′B′C′的重心坐标:___________;
22.(本题满分8分)抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,根据两幅统计图中的信息回答下列问题:
(1)本次调查了多少名学生?
(2)补全条形统计图;
(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?
(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.
23.(本题满分6分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)
24.(本题满分8分)如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的角平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若∠CAB=60°,DE=3 ,求AC的长.
25.(本题满分8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
26. (本题满分10分)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA 向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点.点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm .当点Q到达顶点C时,P,Q同时停止运动.设P, Q两点运动时间为t秒.
(1)当t为何值时,PQ∥BC ?
(2)设四边形PQCB的面积为y,求y关于t的函数解析式;
(3)四边形PQCB的面积与△APQ面积比能为3:2吗?若能,求出此时t的值;若不能,请说明理由;
(4)当t为何值时,△AEQ为等腰三角形?
(直接写出答案)
27.(本题满分10分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE= DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM是以AB为斜边的直角三角形?若存在,求出符合条件的点M的坐标;若不存在,请说明理由.
28.(本题满分10分)【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:
如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值
【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.
(1)请你找出图中与OC相等的线段,并说明理由;
(2)线段OC的最大值为 .
【灵活运用】
(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.
【迁移拓展】
(4)如图③,BC=4 ,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.
九年级数学期末试卷评分标准
一、 选择题(每题3分,共30分)
1 2 3 4 5 6 7 8 9 10
A C B C D B D D B C
二、填空题:(每空2分,共16分)
11. ;12. 1.5 ;13. ;14. m≤3且m≠2 ;
15. π ; 16. 216° ; 17. 8 ; 18.
三、解答题(本大题共10小题,共84分)
19.解方程:(每题4分,共8分)(1) x2-8x+6=0 (2) 2(x-1)2=3x-3
x1=4+ ,x2=4﹣ x1=1,x2=2.5
20.计算(每小题4分,共8分)
(1)﹣ +|1﹣4sin60°|; (2) .
=-2
=-1
21.(1) 1分(2)2分
(3)从图可知:A(﹣2,0),B(﹣4,2),C(﹣6,﹣2);3分
(4)从图上可知重心坐标(﹣4,0);2分
22.(1)15÷30%=50(人),
答:本次调查了50名学生. 1分
(2)50﹣10﹣15﹣5=10(人),
条形图如图所示:
1分
(3)500× =100(人),
答:该校共有500名学生,请你估计“十分了解”的学生有100名. 1分
(4)树状图如下:
3分
共有12种等可能情况,其中所选两位参赛选手恰好是一男一女有6种.1分
所以,所选两位参赛选手恰好是一男一女的概率P= = .1分
23.解:在Rt△CED中,∠CED=58°,
∵tan58°= ,∴DE= ,
在Rt△CFD中,∠CFD=22°,
∵tan22°= ,
∴DF= ,[中*@国&教%育出版~网]
∴EF=DF﹣DE= ,
同理:EF=BE﹣BF= ,
∴ ,[来源:zz%ste*p&.co#m~]
解得:AB≈5.9(米)
24. (1)(1)连接OD,如图,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAB,
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切线; 4分
(2)连接BD,则∠ADB=90°,
∵∠CAB=60°,AD平分∠CAB,
∴∠CAD=∠DAB=30°,
∵DE=3 ,
∴AD=6 ,
∴AB=12,
连接OC,则OC=OA=6,
∵∠CAB=60°,
∴AC=OA=OC=6. 4分
25. (1)由题意得: ,
解得: .
故y与x之间的函数关系式为:y=﹣10x+700, 2分
(2)由题意,得
﹣10x+700≥240,
解得x≤46,
设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),
w=﹣10x2+1000x﹣21000 2分
=﹣10(x﹣50)2+4000,
∵﹣10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=﹣10(46﹣50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;2分
(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,
﹣10(x﹣50)2=﹣250,
x﹣50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元. 2分
26. (1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,
∴AB=10cm.
∵BP=t,AQ=2t,
∴AP=AB﹣BP=10﹣t.
∵PQ∥BC,
∴ = ,
∴ = ,
解得t= ; 2分
(2)∵S四边形PQCB=S△ACB﹣S△APQ= AC•BC﹣ AP•AQ•sinA
∴y= ×6×8﹣ ×(10﹣t)•2t•
=24﹣ t(10﹣t)
= t2﹣8t+24,
即y关于t的函数关系式为y= t2﹣8t+24; 3分
(3)四边形PQCB面积能是△ABC面积的 ,理由如下:
由题意,得 t2﹣8t+24= ×24,
整理,得t2﹣10t+12=0,
解得t1=5﹣ ,t2=5+ (不合题意舍去).
故四边形PQCB面积能是△ABC面积的 ,此时t的值为5﹣ ; 2分
(4)△AEQ为等腰三角形时,分三种情况讨论:
①如果AE=AQ,那么10﹣2t=2t,解得t= ;
②如果EA=EQ,那么(10﹣2t)× =t,解得t= ;
③如果QA=QE,那么2t× =5﹣t,解得t= .
故当t为 秒 秒 秒时,△AEQ为等腰三角形. 3分
27. (1)∵B(1,0),
∴OB=1,
∵OC=2OB=2,
∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴ ,
∴ ,
∴AC=6,
∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得: ,
解得: ,
∴抛物线的解析式为:y=﹣x2﹣3x+4; 3分
(2)①∵A(﹣2,6),B(1,0),
易得AB的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
∵PE= DE,
∴﹣x2﹣3x+4﹣(﹣2x+2)= (﹣2x+2),
x=1(舍)或﹣1,
∴P(﹣1,6); 3分
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),
∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,
AB2=(1+2)2+62=45,
当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3 ,
∴M(﹣1,3+ )或(﹣1,3﹣ );
综上所述,点M的坐标为:∴M(﹣1,3+ )或(﹣1,3﹣ ) 4分
28.(1)如图①中,结论:OC=AE,
理由:∵△ABC,△BOE都是等边三角形,
∴BC=BA,BO=BE,∠CBA=∠OBE=60°,
∴∠CBO=∠ABE,
∴△CBO≌△ABE,
∴OC=AE. 2分
(2)在△AOE中,AE≤OE+OA,
∴当E、O、A共线,
∴AE的最大值为3,
∴OC的最大值为3.
故答案为3. 1分
(3)如图1,连接BM,
∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)
最大值=AB+AN,
∵AN= AP=2 ,
∴最大值为2 +3; 2分
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE= ,
∴OE=BO﹣AB﹣AE=5﹣3﹣ =2﹣ ,
∴P(2﹣ , ). 1分
(4)如图4中,以BC为边作等边三角形△BCM,
∵∠ABD=∠CBM=60°,
∴∠ABC=∠DBM,∵AB=DB,BC=BM,
∴△ABC≌△DBM,
∴AC=MD,
∴欲求AC的最大值,只要求出DM的最大值即可,
∵BC=4 =定值,∠BDC=90°,
∴点D在以BC为直径的⊙O上运动,
由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2 +2 ,
∴AC的最大值为2 +2 . 2分
当点A在线段BD的右侧时,同法可得AC的最小值为2 ﹣2 . 2分
九年级数学上学期期末试卷相关文章: