关于提高小学生思维能力的办法
没有不聪明的孩子,只要找不到对的办法教育的家长,孩子的聪明与蠢,早在早教这个时候拉开了帷幕。下面是学习啦小编为你们整理的内容,希望你们喜欢。
培养思维能力
1、父亲和儿子今年共有60负,又知4年前,父亲的年龄正好是儿子的3倍,儿子今年是多少岁?
分析与解答:4年前,父子的年龄和是:60-4×2=52岁,4年前儿子的岁数为52÷(1+3)=13岁,那么儿子今年的岁数是13+9=17岁。
2、快车与慢车从甲乙两地相对开出,如果慢车先开2小时,两车相遇时慢车超过中点24千米,若快乐先开出2小时,相遇时离中点72千米处,如果同时开出,4小时可以相遇,快车比慢车每小时多行多少千米?
分析与解答:设全程的一半为x,两次行驶中快车行驶的路程为:x+72+x-24=2x-48,慢车行驶的路程为:x+24+x-72=2x-48,快车比慢车多行驶的路程:2x+48-(2x-48)=96千米,把两次行驶可以看作两车同时出发行驶全程,则时间是4×2=8小时,那么快车比慢车每小时多行的千米数为96÷8=12千米。
3、有三堆棋子,每堆棋子数一样多,并且都只有黑白两色,第一堆的黑子数和第二堆里的白子数一样多,第三堆的黑子占全部黑子的 ,把这三堆棋子集中在一起,白子占全部棋子数的几分之几?
分析与解答:第三堆黑子占全部黑子的,那么,第一、二堆里的黑子占全部黑子的,又因为第一堆里黑子数和第二堆里的白子数相同,则第一、二堆里的黑子数正好等于第一堆棋子数,把每堆棋子数看作3,三堆棋子总数则是9,黑子有5份,那么白子有9-5=4份,所以白子占全部棋子数的。
4、早晨8时多钟,有甲、乙两辆汽车先后从化肥厂开往县城,两车的速度都是每小时行驶48千米,8时32分,甲车离化肥厂的距离是乙车离化肥厂距离的5倍,到了8时44分,甲车离化肥厂的距离恰好是乙车离化肥厂距离的2倍,那么甲车是8时几分由化肥厂开出的?
分析与解答:
12÷3×(3+5)=32分钟,8:44-32分=8:12分,故甲车是8时12分由化肥厂开出的。
5、有60个不同的约数的最小自然数是多少?
分析与解答:60=2×2×3×5=(1+1)×(1+2)×(2+1)×(4+1),这个自然数最小是29×32×5×7=5040
6、1!+2!+3!+……+100!的个位数字是( )
分析与解答:1!=1 2!=2 3!=6 4!=24 ,而5! 6! 7!……100!的个位数字全是0,1+2+6+4=13,所以1!+2!+3!+……+100!的个位数字是3
7、一间屋子里有1小学数学思维训练题00盏灯排成一行,按从左到右的顺序编上号1、2、3、4、5……99、100,每盏灯都有一个开关,开始全都关着,把100个学生排在后面,第1个学生把1的倍数的灯全都拉一下,第2个同学把2的倍数的灯全都拉一下……第100个学生把100的倍数的灯都拉一下,这时有多少盏灯是开着的?
分析与解答:一盏灯被拉的次数是奇数,则灯是开着的,被拉的次数是偶数次,则灯是关着的,在1至100中,只有10个完全平方数的约数的个数是奇数个,其余的约数都是偶数个,所以有10盏灯是开着的,即12、22、32、42、52、62、72、82、92、102
8、一游客划着小船逆流而上,船上一只皮球掉入河里,2分钟后游客发现,立即掉头追皮球,问游客几分钟追上皮球?
分析与解答:2分钟游客与皮球的距离为:(球速+游客速度)×2=(水速+船速-水速)×2=2个船速追的时间
2个船速÷(顺速-水速)=2个船速÷船速=2分钟即游客2分钟追上皮球。
9、饲养场的白兔是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍,原来白兔、黑兔各有多少只?
分析与解答:卖掉10只黑兔,也应卖掉50只白兔,这样白兔只数正是黑兔的5倍,而现在却买回20只白兔,相关20+50=70只,现在白兔是黑兔的7倍,相关7-5=2倍,一倍差是70÷2=35只,原来黑兔只数为35+10=45只,白兔只数为45×5=225只
10、有四个不同的自然数,这四个数字总和是1001,如果让这四个数的公约数尽可能大,那么,这四个数中最大的一个数是多少?
分析与解答:1001=7×11×13,要使公约数最大,首先考虑它是“11×13”,但“7”不能拆成四个不同的数,再考虑“7×13”,而11=1+2+3+5,所以最大的公约数是7×13=91,不同的四个数分别是91×1,91×2,91×3,91×5,最大的数是91×5=455
11、一种彩电按定价卖出可得利润960元,如果按定价的八折出售,则亏832元,该彩电购入价是多少元?
分析与解答:把定价看作单位“1”,按定价的八折出售,则亏832元,则定价为(960+832)÷(1-80%)=8960元 ,所以购入价为8960-960=8000元
12、有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”
司机答道:“10分钟前我超过一辆自行车”,这人继续走10分钟,遇到自行车,已知自行车速度是步行速度的3倍,汽车速度是步行速度的( )倍
分析与解答:把步行者速度看作1,自行车速度看作3,汽车和自行车同时在A点,人在B点10分钟后,人、汽车相遇在C点,则自行车在10分钟前到达D点,再过10分钟后,人自行车相遇CD的长为(1+3)×10=40,AD的长为3×10=30,AC是汽车10分钟走的路程,AC=AD+CD=40+30=70.
汽车速度为70÷10=7
汽车速度是步行速度的7倍
做题小窍门
选择题答题攻略
1.剔除法
利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特殊值检验法
对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推法
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法
将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法
从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法
由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法
对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
关于提高小学生思维能力的办法相关文章: