2017年广东省茂名市中考数学模拟试卷(2)
∵AE= AB,
∴BE=PE=2AE,
∴∠APE=30°,
∴∠PEF=∠BEF=60°,
∴∠EFB=∠EFP=30°,
∴EF=2BE,PF= PE,
∴①正确,②不正确;
又∵EF⊥BP,
∴EF=2BE=4EQ,
∴③不正确;
又∵PF=BF,∠BFP=2∠EFP=60°,
∴△PBF为等边三角形,
∴④正确;
所以正确的为①④,
故答案为:①④.
【点评】本题主要考查矩形的性质和轴对称的性质、等边三角形的判定、直角三角形的性质等知识,综合性较强,掌握直角三角形中30°角所对的直角边是斜边的一半是解题的关键.
三、解答题(本题共6小题,共64分)请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.
17.(10分)(2014•吉林)某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.
(1)求抽取了多少份作品;
(2)此次抽取的作品中等级为B的作品有 48 ,并补全条形统计图;
(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)根据C的人数除以占的百分比,得到抽取作品的总份数;
(2)由总份数减去其他份数,求出B的份数,补全条形统计图即可;
(3)求出A占的百分比,乘以800即可得到结果.
【解答】解:(1)根据题意得:30÷25%=120(份),
则抽取了120份作品;
(2)等级B的人数为120﹣(36+30+6)=48(份),
补全统计图,所示:
故答案为:48;
(3)根据题意得:800× =240(份),
则估计等级为A的作品约有240份.
【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
18.(10分)(2010•兰州)是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)
【考点】解直角三角形的应用.
【分析】(1)过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.
(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.
【解答】解:(1),作AD⊥BC于点D.
Rt△ABD中,
AD=ABsin45°=4× =2 .
在Rt△ACD中,
∵∠ACD=30°,
∴AC=2AD=4 ≈5.6.
即新传送带AC的长度约为5.6米;
(2)结论:货物MNQP应挪走.
解:在Rt△ABD中,BD=ABcos45°=4× =2 .
在Rt△ACD中,CD=ACcos30°=2 .
∴CB=CD﹣BD=2 ﹣2 =2( ﹣ )≈2.1.
∵PC=PB﹣CB≈4﹣2.1=1.9<2,
∴货物MNQP应挪走.
【点评】应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.
19.(10分)(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
【考点】二次函数的应用.
【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;
根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.
(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;
【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,
则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50× ,化简得:y=﹣5x+2200;
供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,
则 ,
解得:300≤x≤350.
∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);
(2)W=(x﹣200)(﹣5x+2200),
整理得:W=﹣5(x﹣320)2+72000.
∵x=320在300≤x≤350内,
∴当x=320时,最大值为72000,
即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.
【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.
20.(10分)(2011•安顺)已知:,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB= ,求DE的长.
【考点】切线的判定与性质;勾股定理;圆周角定理;解直角三角形.
【分析】(1)连接CD,由BC为直径可知CD⊥AB,又BC=AC,由等腰三角形的底边“三线合一”证明结论;
(2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,证明结论;
(3)连接CD,在Rt△BCD中,已知BC=18,cosB= ,求得BD=6,则AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB= ,可求AE,利用勾股定理求DE.
【解答】(1)证明:连接CD,
∵BC为⊙O的直径,∴CD⊥AB,
又∵AC=BC,
∴AD=BD,即点D是AB的中点.
(2)解:DE是⊙O的切线.
证明:连接OD,则DO是△ABC的中位线,
∴DO∥AC,
又∵DE⊥AC,
∴DE⊥DO即DE是⊙O的切线;
(3)解:∵AC=BC,∴∠B=∠A,
∴cosB=cosA= ,
∵cosB= ,BC=18,
∴BD=6,
∴AD=6,
∵cosA= ,
∴AE=2,
在Rt△AED中,DE= .
【点评】本题考查了切线的判定与性质,勾股定理,圆周角定理,解直角三角形的运用,关键是作辅助线,将问题转化为直角三角形,等腰三角形解题.
21.(12分)(2013•包头),在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)①,当 时,求 的值;
(2)②当DE平分∠CDB时,求证:AF= OA;
(3)③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG= BG.
【考点】相似形综合题.
【分析】(1)利用相似三角形的性质求得EF与DF的比值,依据△CEF和△CDF同高,则面积的比就是EF与DF的比值,据此即可求解;
(2)利用三角形的外角和定理证得∠ADF=∠AFD,可以证得AD=AF,在直角△AOD中,利用勾股定理可以证得;
(3)连接OE,易证OE是△BCD的中位线,然后根据△FGC是等腰直角三角形,易证△EGF∽△ECD,利用相似三角形的对应边的比相等即可证得.
【解答】(1)解:∵ = ,
∴ = .
∵四边形ABCD是正方形,
∴AD∥BC,AD=BC,
∴△CEF∽△ADF,
∴ = ,
∴ = = ,
∴ = = ;
(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF,
又∵AC、BD是正方形ABCD的对角线.
∴∠ADO=∠FCD=45°,∠AOD=90°,OA=OD,而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,
∴∠ADF=∠AFD,∴AD=AF,
在直角△AOD中,根据勾股定理得:AD= = OA,
∴AF= OA.
(3)证明:连接OE.
∵点O是正方形ABCD的对角线AC、BD的交点.
∴点O是BD的中点.
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴OE∥CD,OE= CD,
∴△OFE∽△CFD.
∴ = = ,
∴ = .
又∵FG⊥BC,CD⊥BC,
∴FG∥CD,
∴△EGF∽△ECD,
∴ = = .
在直角△FGC中,∵∠GCF=45°.
∴CG=GF,
又∵CD=BC,
∴ = = ,
∴ = .
∴CG= BG.
【点评】本题是勾股定理、三角形的中位线定理、以及相似三角形的判定与性质的综合应用,理解正方形的性质是关键.
22.(12分)(2013•呼伦贝尔)已知:在平面直角坐标系中,抛物线 交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)求抛物线的解析式及顶点D的坐标.
(2)1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
【考点】二次函数综合题.
【分析】(1)根据二次函数的对称轴列式求出b的值,即可得到抛物线解析式,然后整理成顶点式形式,再写出顶点坐标即可;
(2)令y=0解关于x的一元二次方程求出点A、B的坐标,过点D作DE⊥y轴于E,然后根据△PAD的面积为S=S梯形AOCE﹣S△AOP﹣S△PDE,列式整理,然后利用一次函数的增减性确定出最小值以及t值;
(3)过点D作DF⊥x轴于F,根据点A、D的坐标判断出△ADF是等腰直角三角形,然后求出∠ADF=45°,根据二次函数的对称性可得∠BDF=∠ADF=45°,从而求出∠PDA=90°时点P为BD与y轴的交点,然后求出点P的坐标,再利用勾股定理列式求出AD、PD,再根据两边对应成比例夹角相等两三角形相似判断即可.
【解答】解:(1)对称轴为x=﹣ =﹣2,
解得b=﹣1,
所以,抛物线的解析式为y=﹣ x2﹣x+3,
∵y=﹣ x2﹣x+3=﹣ (x+2)2+4,
∴顶点D的坐标为(﹣2,4);
(2)令y=0,则﹣ x2﹣x+3=0,
整理得,x2+4x﹣12=0,
解得x1=﹣6,x2=2,
∴点A(﹣6,0),B(2,0),
1,过点D作DE⊥y轴于E,
∵0≤t≤4,
∴△PAD的面积为S=S梯形AOED﹣S△AOP﹣S△PDE,
= ×(2+6)×4﹣ ×6t﹣ ×2×(4﹣t),
=﹣2t+12,
∵k=﹣2<0,
∴S随t的增大而减小,
∴t=4时,S有最小值,最小值为﹣2×4+12=4;
(3)2,过点D作DF⊥x轴于F,
∵A(﹣6,0),D(﹣2,4),
∴AF=﹣2﹣(﹣6)=4,
∴AF=DF,
∴△ADF是等腰直角三角形,
∴∠ADF=45°,
由二次函数对称性,∠BDF=∠ADF=45°,
∴∠PDA=90°时点P为BD与y轴的交点,
∵OF=OB=2,
∴PO为△BDF的中位线,
∴OP= DF=2,
∴点P的坐标为(0,2),
由勾股定理得,DP= =2 ,
AD= AF=4 ,
∴ = =2,
令x=0,则y=3,
∴点C的坐标为(0,3),OC=3,
∴ = =2,
∴ = ,
又∵∠PDA=90°,∠COA=90°,
∴Rt△ADP∽Rt△AOC.
【点评】本题是二次函数综合题型,主要利用了二次函数的对称轴,三角形的面积二次函数的性质,相似三角形的判定,综合题,但难度不是很大,(2)利用梯形和三角形的面积表示出△ADP的面积是解题的关键,(3)难点在于判断出点P为BD与y轴的交点.
猜你喜欢:
下一篇:2017年广东省数学中考模拟试题