学习啦>学习方法>教学方法>

二次根式性质的教案人教版

芷琼分享

  二次根式在我国初中数学科目中是一个非常重要的知识点,充分了解二次根式的性质对于学习二次根式的知识有很大的意义。接下来学习啦小编为你整理了二次根式性质的教案人教版,一起来看看吧。

  二次根式性质的教案人教版

  一、教学目标

  1.了解二次根式的意义;

  2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3. 掌握二次根式的性质 和 ,并能灵活应用;

  4.通过二次根式的计算培养学生的逻辑思维能力;

  5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

  二、教学重点和难点

  重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

  难点:确定二次根式中字母的取值范围.

  三、教学方法

  启发式、讲练结合.

  二次根式性质的教学过程

  (一)复习提问

  1.什么叫平方根、算术平方根?

  2.说出下列各式的意义,并计算:

  通过练习使学生进一步理解平方根、算术平方根的概念.

  观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 表示的是算术平方根.

  (二)引入新课

  我们已遇到的这样的式子是我们这节课研究的内容,引出:

  新课:二次根式

  定义: 式子 叫做二次根式.

  对于 请同学们讨论论应注意的问题,引导学生总结:

  (1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

  (2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

  例1 当a为实数时,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0

  例2 x是怎样的实数时,式子 在实数范围有意义?

  解:略.

  说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

  例3 当字母取何值时,下列各式为二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式.

  (2)-3x≥0,x≤0,即x≤0时, 是二次根式.

  (3) ,且x≠0,∴x>0,当x>0时, 是二次根式.

  (4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所满足的条件:

  (1) ; (2) ; (3) ; (4)

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

  解:(1)由2a+3≥0,得 .

  (2)由 ,得3a-1>0,解得 .

  (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

  (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

  (三)小结(引导学生做出本节课学习内容小结)

  1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

  2.式子中,被开方数(式)必须大于等于零.

  (四)练习和作业

  练习:

  1.判断下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

  2.a是怎样的实数时,下列各式在实数范围内有意义?

  二次根式性质的教学反思

  在二次根式这一章的学习中,重点是是掌握二次根式的运算,教学的关键是理解二次根式的性质,这块教学内容是在第十二章实数的基础上,着重研究二次根式,二次根式教学反思。在本章教学中,存在以下问题:

  1、在教学设计中,仍然存在着对学情分析不足,主要是过高估计学生的学习能力,一方面每节课设计的教学内容过多,经常一节课结束后还有不少内容没有完成,另一方面对以前学过的知识的复习工作做的不够,导致后续的新知识的学习遇到不少麻烦。如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的化简过程中因此而出错。

  2、在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式和,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。

  3、在学生的学习方面,也有值得反思的地方我班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导,加强改进,提高教学实效。


猜你感兴趣的:

1.初二人教版下册二次根式数学教案

2.《二次根式》复习教案及反思

3.二次根式导学案人教版

4.一元二次方程教案人教版

5.勾股定理教案人教版

    2944148