初中学生解数学题目的技巧
解题是深化知识、发展智力、提高能力的重要手段。规范的解题能够养成良好的学习习惯,提高思维水平。下面是小编为大家整理的关于初中学生解数学题目的技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1初中学生解数学题目的技巧
认真分析问题,找解题准切入点
由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:如右图,AB=DC,AC=DB。求证:∠A=∠D。
此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。
发挥想象力,借助面积出奇制胜
面积问题是数学中常出现的问题,在面积定义及相关规律中,蕴含着深刻的数学思想,如果学生能充分了解其中的韵味,能够熟练的掌握其中的数学论证思维,就有可能在其他数学问题中借助面积,出奇制胜顺利实现解题。由于几何图形的面积与线段、角、弧等有密切的联系,所以用面积法不但可证各种几何图形面积的等量关系,还可证某些线段相等、线段不等、角的相等以及比例式等多种类型的几何题。
例1若E、F分别是矩形ABCD边AB、CD的中点,且矩形EFDA与矩形ABCD相似,则矩形ABCD的宽与长之比为(A)1:2 (B)2:1 (C)1:2 (D)2:1 由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因为E、F分别是矩形ABCD的中点所以S矩形ABCD=2S矩形EFDA所以S矩形EFDAS矩形ABCD=k2=12。所以k=1:2。即矩形ABCD的宽与长之比为1:2;故选(C)。 此题我们利用了相似多边形面积的比等于相似比平方,这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。
2中学数学解题技巧
审题技巧
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。
(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。
(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。
(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
解题后的反思
解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾进行思考,只有这样,才能有效的深化对知识的理解,提高思维能力
1)在解题时有时多次受阻而后“灵感”突来。这时,思维有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用。(2)学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可开拓学生思路,提高解题能力,这样也是十分必要的。
3中学数学解题方法
1.认真阅读题目,对已经条件和问题要求进行认真梳理。通过这种做法,学生把题目中的已经条件进行了清晰的掌握,对问题的要求进行了很好的确认,为后续的知识点的寻找与联系做好初步准备。
在具体的教学过程中,我们教师总能发现许多学生错题与漏题的原因很简单,即没有认真阅读题目而产生了理解偏差与错误,而这种情况是我们教师指导学生最应该避免的。
2.准确理解概念。对于概念的学习,不仅仅是对它的阅读、理解与记忆,而是深入地发掘它的内涵,把概念需要的条件进行清晰的罗列,对概念的外延进行不断地拓展。通过不断地做题来加强对概念的熟练程度和认知程度,从而可以加快自己的解题速度,提高自己的思想认识水平。
3.对教师的点拨内容进行及时地归纳与练习。这是许多学生常常忽略的一点。通常情况下,教师都是在非常必要的情况下进行讲解,而讲解的知识点与方法具有特别强的指导意义,是非常重要的。如果一个学生能够在教师进行重要内容的讲解时非常用心地留下笔记进行归纳梳理,同时不断地反思,加强练习,那么他对问题的认识将会更深入,更准确,解题速度也会更快,思想认识会更上一个新台阶。而思想认识的提高对于学生的发展来说是最本质的东西。
4.对教学内容、教师点拨不断地进行反思。如果一个学生能够做到对教学内容与教师点拨内容进行不断地反思,那么这个学生一定会在自己原来的基本上不断地进步,而且这种进步的速度会非常地快。一个不善于思考的学生想要提高自己的学习水平,提高自己的学习效果几乎是不可能的。所以,在我们的教育教学中,引导学生进行不断地思考才是重中之重。也许一个学生一开始的思维是受到局限的,但当他不断地进行思考与联系,可以想像,他总会有顿悟的一天的。如果没有这样的思考习惯,那就会局限在一个非常低的水平,这不是我们教育的目的。
4中学生数学解题技巧
巧妙转换,过渡求解法
在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。
例如:已知:AB为半圆的直径,其长度为30 cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。
函数与方程结合求新意
函数思想,是指运用函数的图像、最值、增减性等基本性质来解题.而函数作为初中数学的一大知识点,经常与不等式、方程式相伴出现,将函数与方程结合,能够让学生在解题过程中“如虎添翼”.
【例2】(2014?北海)某经销商从市场得知如下信息:他计划用4万资金一次性购买这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种手表全部售完后获得利润y元.试求要使全部利润不低于1.26万元,则有几种进货方案?哪种进货方案利润最大?分析:这道题实际上考查的是一次函数与一元一次不等式的应用,首先要列出x与y的方程式,并根据此方程式列一元一次不等式组,最后利用一元一次函数的性质求最佳方案.解:根据题目可求得x与y的关系为y=(900-700)x+(160-100)×(100-x)=140x+6000.∵700x+100×(100-x)≤40000,∴x≤50.令y≥12600,则140x+6000≥12600,x≥47.1.因为x≤50,∴47.1≤x≤50,∴x有三个解:48、49、50,故有三种进货方案.∵y=140x+6000中,x的系数140>0,∴y随着x的增大而增大,∴x=50时,y能够取最大值,即进50块A品牌手表时,可以收获最大利润.
这道题求三种方案的步骤基本属于方程的求解问题,而判断最大利润时则可以直接利用一次函数的增减性,免去了将三个方案一一计算、比较的麻烦,避免计算过程中的错误,使解题事半功倍.
初中学生解数学题目的技巧相关文章:
2.初中数学解题技巧