学习啦>学习方法>高中学习方法>高三学习方法>高三数学>

2020高考数学三角函数诱导公式详解

巧绵分享

高考是人生道路上的重要转折点,会对考生的未来发展产生重要的影响作用,甚至改变命运。想要在高考中取得好成绩,自然是要付出努力的,只有努力才能获得回报。这里给大家分享一些2020高考高频考点知识归纳,希望对大家有所帮助。

2020高考数学常见诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于π/2k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

#

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三内切,四余弦

#

还有一种按照函数类型分象限定正负:

函数类型 第一象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

余弦 ...........+............—............—............+........

正切 ...........+............—............+............—........

余切 ...........+............—............+............—........

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

万能公式推导

附推导:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......x

(因为cos^2(α)+sin^2(α)=1)

再把x分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

★记忆方法:谐音、联想

正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

余弦三倍角:4元3角 减 3元(减完之后还有“余”)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

★另外的记忆方法:

正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

余弦三倍角: 司令无山 与上同理

和差化积公式

三角函数的和差化积公式

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

积化和差公式

三角函数的积化和差公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

和差化积公式推导

附推导:

首先,我们知道sin(a+b)=sinaxcosb+cosaxsinb,sin(a-b)=sinaxcosb-cosaxsinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sinaxcosb

所以,sinaxcosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosaxsinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosaxcosb-sinaxsinb,cos(a-b)=cosaxcosb+sinaxsinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosaxcosb

所以我们就得到,cosaxcosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sinaxsinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sinaxcosb=(sin(a+b)+sin(a-b))/2

cosaxsinb=(sin(a+b)-sin(a-b))/2

cosaxcosb=(cos(a+b)+cos(a-b))/2

sinaxsinb=-(cos(a+b)-cos(a-b))/2

有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)xcos((x-y)/2)

sinx-siny=2cos((x+y)/2)xsin((x-y)/2)

cosx+cosy=2cos((x+y)/2)xcos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)xsin((x-y)/2)

2020如何高效的掌握高中数学知识点

一、把知识点进行分类

高中三年所学的知识点并不少,但是如果进行分类的话,总的来说也不过八九个系列。所以要想更高效的掌握高中数学知识点,可以通过把知识点进行分类的方法来达到。你可以想象,不同的知识点系列分别放进不同的箱子,把每个箱子里的知识点挨个解决掉,就能够有很不错的掌握高中数学知识点了。  二、要按照任务来划分计划

把高中数学知识点进行了分类,接下来要把各个类别的知识点分配给自己,也就是给大脑分配任务,只有大脑完全掌握了才能够在高考中取得好成绩。每个类别的知识点不可能一次性解决掉,我们需要有计划性的去攻克它们。

要注意把各个类别的知识点按照难易程度和内容的差异性来制定计划,比如这个类别的知识点大概要花多长时间,另一个类别可能会花的时间会更长或更短,可以把每天的学习时间中的一部分用来制定高中数学知识点的掌握上。当然最好是把你的计划写出来,列出大纲,这样就可以目标明确的去执行了。  三、时间的安排要注意合理化

要制定计划是很容易的,但是最难的还是在于是不是能够真正有效的去执行这些计划。如果要想让你的计划很完美,需要两个方面的支撑:一个方面是这个目标是可以量化的;另一个方面是目标制定的时间是可以控制的。

需要明确下目标制定的时间是可以控制的,就是把高中数学知识点的学习当作大大小小的任务,而这些任务不要一开始就是内容多难度大,而要从小处着手,然后再一级一级的增加。循序渐进才能取得更好的效果。

2020高考数学三角函数诱导公式详解相关文章:

1.2020高考数学必看知识点

2.2020高考数学快速解题方法

3.2020高考数学6大类型题的考试内容

4.高考数学诱导公式汇总

5.2020年高考数学知识点

6.高考数学诱导公式

7.2020年高考数学考点大全

8.2020高三数学函数知识点归纳

9.高考数学必考知识点考点2020大全总结

10.高考数学考点2020总结概括

    445642