数学复习方法:方程和方程组
初中的数学是不是让你抓破脑袋?有哪些好的数学学习方法呢?以下是小编给大家带来的数学复习方法:方程和方程组,仅供考生参考,欢迎大家阅读!
初中数学代数复习要点之方程和方程组
2019年初中数学期末复习方法
数学学习是一个系统浩繁的工程,而现在临近期末,许多学生都在想,如何才能更好地把握方法。
提高学习效率,更好地利用有限时间,让自己能够取得一个不错的成绩,迎接即将到来的寒假呢?
复习是系统工程 环环相扣认真备考
期末复习是把一个学期的课程在最后阶段进行系统、完善、深化和熟练运用所学内容的关键环节。
每一个学生都知道只有利用好这次复习,让自己在短时间内做到巩固、消化、归纳所学的数学基础知识。
提高分析、解决问题的能力,才能更好地利于所学知识在实际生活中加以运用。
同时,这个阶段也是让基础较弱的同学对教材知识进行再学习的过程,从而达到查缺补漏的目的,提高学习成绩。
精心制定计划 牢固掌握基础知识和基本技能
针对现在的新变化,要“围绕新课标,精心制定复习计划,做到复习目标题目化”。
学生在复习过程中应该围绕新课标规定的内容和系统化的知识要点,精心编定复习计划。
学生在制定计划的同时一定要立足自己平时的学习情况,采用基础知识习题化的方法。
并且在不断的测试中,找出难以理解、遗忘率较高且易错的知识点,做重点复习。
并要做好习题的选择、配套练习的筛选,从而明确自己的复习目标。
而鉴于一些学生并不重视基础知识复习,复习开始第一阶段,应该以牢固掌握课本上的基础知识和基本技能为主。
提出了“追本求源,牢固掌握基础知识和基本技能,做到题目训练系列化”的建议。在这个阶段,学生不妨对自己的要求明确化,做到:
①对基本概念、法则、公式、定理不仅要能正确叙述,而且要能灵活应用;
②对课本后练习题必须逐题过关;
③每章节后面的复习题,要能一题不漏地独立完成,少数同学不能独立完成的可以请教其他同学或在老师的指导下完成。
对一些基础较好的同学应注意设计好“问题群”和“习题群”,即分题型组织复习,总结组题规律。
知识点系统化 解题方法系统化
在经过一定的复习之后,大多数学生都能对本学期已经学过的知识进行系统整理;
根据基础知识的相互联系及相互转化关系,做到梳理归类,分块整理,重新组织,变为系统化、条理化的知识树,牢牢地记在脑海里。
通过归类,对比复习,分块练习与综合练习交叉进行,使自己真正掌握教材中所学习的内容。
而一部分学生如果这部分复习工作做得不好就要抓紧了。“知识点系统化,提高复习效率,做到系列复习重点化”。
另外,对复习的同学,根本任务还是在此阶段寻求解题方法与揭示解题规律。
具体应该做到:
①知道常见题型的解题方法;
②重视这些题目中蕴含的数学思想方法;
③关注近年中考中的新题型。
最后一个要点就是“注意适量练习,争取最佳效果,解题方法系统化”。
上述工作完成之后,同学们已经将知识进行了系统梳理、对教材内容也做到了较好的把握,可以开始进入到最后的综合复习。
这个阶段,学生除了重视课本中的重点章节外,主要还应以练习为主,充分发挥自己的主体作用。
可以以章节综合习题和体现系统知识为主的综合练习题为主,从中查缺补漏,巩固复习成效,达到自我完善的目的。
另外,在解题时应养成良好的审题习惯,注意书写规范等,应强调解题方法的系统性,如数学的方法和常用的解题技巧等。
初中数学解题方法总结:
一、选择题的解法
1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;
每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;
这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;
则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;
根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。
类比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函数、方程、不等式
常用的数学思想方法:
⑴数形结合的思想方法。
⑵待定系数法。
⑶配方法。
⑷联系与转化的思想。
⑸图像的平移变换。
四、证明角的相等
1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、 等腰梯形同一底上的两个角相等。
11、 关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所 对的圆心角相等。
12、 圆内接四边形的任何一个外角都等于它的内对角。
13、 同弧或等弧所对的圆周角相等。
14、 弦切角等于它所夹的弧对的圆周角。
15、 同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、 全等三角形的对应角相等。
17、 相似三角形的对应角相等。
18、 利用等量代换。
19、 利用代数或三角计算出角的度数相等
20、 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
五、证明直线的平行或垂直
1、证明两条直线平行的主要依据和方法:
⑴、定义、在同一平面内不相交的两条直线平行。
⑵、平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。
⑶、平行线的判定:同位角相等(内错角或同旁内角),两直线平行。
⑷、平行四边形的对边平行。
⑸、梯形的两底平行。
⑹、三角形(或梯形)的中位线平行与第三边(或两底)
⑺、一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
2、证明两条直线垂直的主要依据和方法:
⑴、两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。
⑵、直角三角形的两直角边互相垂直。
⑶、三角形的两个锐角互余,则第三个内角为直角。
⑷、三角形一边的中线等于这边的一半,则这个三角形为直角三角形。
⑸、三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
⑹、三角形(或多边形)一边上的高垂直于这边。
⑺、等腰三角形的顶角平分线(或底边上的中线)垂直于底边。
⑻、矩形的两临边互相垂直。
⑼、菱形的对角线互相垂直。
⑽、平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。
⑾、半圆或直径所对的圆周角是直角。
⑿、圆的切线垂直于过切点的半径。
⒀、相交两圆的连心线垂直于两圆的公共弦。
六、证明线段的比例式或等积式的主要依据和方法:
1、比例线段的定义。
2、平行线分线段成比例定理及推论。
3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
4、过分点作平行线;
5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。
6、相似三角形的周长的比等于相似比。
7、相似三角形的面积的比等于相似比的平方。
8、相似三角形的对应边成比例。
9、通过比例的性质推导。
10、用代数、三角方法进行计算。
11、借助等比或等线段代换。
七、几何作图
1、掌握最基本的五种尺规作图
⑴、作一条线段等于已知线段。
⑵、作一个角等于已知角。
⑶、平分已知角。
⑷、经过一点作已知直线的垂线。
⑸、作线段的垂直平分线。
2、掌握课本中各章要求的作图题
⑴、根据条件作任意的三角形、等要素那角性、直角三角形。
⑵、根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。
⑶、作已知图形关于一点、一条直线对称的图形。
⑷、会作三角形的外接圆、内切圆。
⑸、平分已知弧。
⑹、作两条线段的比例中项。
⑺、作正三角形、正四边形、正六边形等。
八、几何计算
(一)、角度与弧度的计算
1、三角形和四边形的角的计算主要依据
⑴、三角形的内角和定理及推论。
⑵、四边形的内角和定理及推论。
⑶、圆内接四边形性质定理。
2、弧和相关的角的计算主要依据
⑴、圆心角的度数等于它所对的弧的度数。
⑵、圆周角的度数等于它所对的弧的度数的一半。
⑶、弦切角的度数等于所夹弧度数的一半。
3、多边形的角的计算主要依据
⑴、n边形的内角和=(n-2)*180°
⑵、正n边形的每一内角=(n-2)*180°÷n
⑶、正n边形的任一外角等于各边所对的中心角且都等于