高考状元高考数学易错知识点及复习高分技巧
导读:教书育人楷模,更好地指导自己的学习,让自己不断成长。让我们一起到学习啦一起学习吧!下面学习啦网的小编给你们带来了高三数学学习方法文章《高考状元高考数学易错知识点及复习高分技巧》供考生们参考。
高考数学复习高分技巧
高考数学第一轮复习备考定位
现阶段,学生已基本掌握中学数学知识体系,具备一定解题经验,对各种数学基本方法、思想都有一定认识。后期复习,应以深化理解基础知识,完善知识结构,并加强综合训练为主,提高数学思想,熟练掌握各类数学方法。
高考数学第一轮复习:抓基础要点
1.抓基础有三个要点
(1)保证综合训练题量,限时限量完成套题训练,在快速、准确、规范上下功夫。
(2)抬起头来做题,从清晰解题思路、优化解题步骤、寻找最佳切入点方面,做好解题的归纳小结。
(3)及时改错、补漏、拾遗。
2.从能力要求的角度跟进提升
(1)熟练三种数学语言(数学文字语言,数学符号语言,数学图形语言)的相互转换。
(2)强化训练细致严密的审题习惯。
(3)加强训练快捷灵活的解题切入。
(4)要在确定合理运算方向,选择合理运算途径,优化组合公式法则,形成灵活善变的解题策略方面下功夫。
(5)对实际应用、开放探索问题,解选择题、填空题等策略问题也应适度训练。
3.做好心理调节
除数学能力外,过硬的心理素质也是影响考试成败的主要因素。学大教育一对一辅导老师指出,考生要找准自己的位置,确立合理的参照目标,始终看到自己的成绩和进步,形成积极的心理效应,以提高后期复习效率和应考能力。同时要明确,试卷必有难题,作答时要充满自信,明确试卷的难易对每个人都公平。
高考状元总结的高考数学易错知识点大全
集合与简易逻辑
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,B高三经典纠错笔记:数学A,B,三种情况,在解题中如果思维不够缜密就有可能忽视了 B这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是若 A则B,则这个命题的逆命题是若B则A,否命题是若┐A则┐B,逆否命题是若┐B则┐A。这里面有两组等价的命题,即原命题和它的逆否命题等价,否命题与逆命题等价。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对a,b都是偶数的否定应该是a,b不都是偶数,而不应该是a ,b都是奇数。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=B成立,则A是B的充分条件,B是A的必要条件;如果B=A成立,则A是B的必要条件,B是A的充分条件;如果AB,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
易错点5 逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p=p真或q真,命题p=p假且q假(概括为一真即真);命题pq真p真且q真,pq假p假或q假(概括为一假即假);┐p真p假,┐p假p真(概括为一真一假)。
函数与导数
易错点6 求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
易错点7 带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点8 求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。