数学高考题型题路归纳
学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是学习啦小编为大家整理的数学高考题型题路分析,希望对大家有所帮助!
数学高考题型题路总结
(一) 选择题
对选择题的审题,主要应清楚:是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有三种基本方法:
1、直接解答法。根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
2、排除法。把选项中错误中答案排除,余下的便是正确答案。
3、 猜测法。这里可不是让你拿橡皮掷筛子哦,而是根据你所学的知识,合理推测。例如,让你求椭圆的离心率,选项有4个,其中两个大于1,两个在0~1之间,那肯定不能选择大于1的选项。(不知道为什么的,赶紧面壁去吧)
(二) 应用性问题的审题和解题技巧
解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧
最值和定值是变量在变化过程中的两个特定状态。
最值着眼于变量的最大/小值以及取得最大/小值的条件;
定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。分析和解决最值问题和定值问题的思路和方法也是多种多样的。命制最值问题和定值问题能较好体现数学高考试题的命题原则。应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题
解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。在做这种题时,有一些共同问题需要注意:
1、注意完成题目的全部要求,不要遗漏了应该解答的内容。
2、在平时练习中要养成规范答题的习惯。
3、不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4、注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5、保证计算的准确性,注意物理单位的变换。
(五) 参数问题的审题和解题技巧参数问题
参数兼有常数和变数的双重特征,是数学中的“活泼”元素,曲线的参数方程,含参数的曲线方程,含参变系数的函数式、方程、不等式等,都与参数有关。
函数图象与几何图形的各种变换也与参数有关,有的探究性问题也与参数有关。参数具有很强的“亲和力”,能广泛选用知识载体,能有效考查数形结合、分类讨论、运动变换等数学思想方法。
应对参数问题要把握好两个环节,一是搞清楚参数的意义几何意义、物理意义、实际意义等,特别是具有几何意义的参数,一定要运用数形结合的思想方法处理好图形的几何特征与相应的数量关系的相互联系及相互转换。二是要重视参数的取值的讨论,或是用待定系数法确定参数的值,或是用不等式的变换确定参数的取值范围。
(六) 代数证明题的审题和解题技巧代数证明题
近几年的数学高考注意控制立体几何试题的难度,推理论证能力的考查重点转移到代数与解析几何特别是代数证明题。函数的性质及相关函数的证明题;数列的性质及相关数列的证明题;不等式的证明题,尤其是与函数或数列相综合的不等式的证明题等,都频频出现在近几年的数学高考试题之中。
应对代数证明题,一是要全面审视各相关因素的关系,注意题目的整体结构;二是要完整、准确表述推理论证的过程,对于具有几何意义的代数证明题,要妥善处理几何直观、数式变换及推理论证的关系,注意防止简单运用“如图可知”替代推理论证。
(七) 探究性题的审题和解题技巧
近几年的数学高考贯彻了“多考一点想,少考一点算”的命题意图,加大试题的思维量,控制试题的运算量,突出对数学的“核心能力”——思维能力的考查。有些试题设计了新颖的情景,有些试题设计了灵活的设问方式,有些试题设计了新的题型结构如存在性问题;发现结论且证明结论的问题;寻求并证明充分条件或必要条件的问题等 ,这样的试题有助于克服死记硬背和机械照搬,优化考查功能。
应对探究性问题要审慎处理“阅读理解”和“整体设计”两个环节,首先要把题目读懂,全面、准确把握题目提供的所有信息和题目提出的所有要求,在此基础上分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,再落笔解题。在思维受阻时,及时调整解题方案。切忌一知半解就动手解题。
看过"数学高考题型题路归纳 "的还看了: