2017朝阳中考数学模拟真题答案(2)
2017朝阳中考数学模拟试题答案
1.A 2.B 3.B 4.D 5.B 6.C 7.B 8.D 9.A 10.D
11.2(x-2)2 12.< 13. 14.π 15. 16.②④
17.解:原式=()2+-×
=+-1=.
18.解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(-4,m),
∴k1=1×8=8,m=8÷(-4)=-2,
∴点B的坐标为(-4,-2).
将A(1,8)、B(-4,-2)代入y2=k2x+b中, ,解得:.
∴k1=8,k2=2,b=6.
(2)当x=0时,y2=2x+6=6,
∴直线AB与y轴的交点坐标为(0,6).
∴S△AOB=×6×4+×6×1=15.
(3)观察函数图象可知:当-41时,一次函数的图象在反比例函数图象的上方,
∴不等式x+b的解为-4≤x<0或x≥1.
19.30;144°
20.解:(1)在Rt△ADF中,由勾股定理得,
AD===15(cm).
(2)AE=AD+CD+EC=15+30+15=60(cm).
过点E作EH⊥AB于H,
在Rt△AEH中,sin∠EAH=,
∴EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).
答:点E到AB的距离为58.2 cm.
21.(1)证明:连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠BAE,
∴∠OAC=∠CAE,
∴∠OCA=∠CAE,
∴OC∥AE,
∴∠OCD=∠E,
∵AE⊥DE,
∴∠E=90°,
∴∠OCD=90°,
∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径,
∴CD是圆O的切线;
(2)解:在Rt△AED中,
∵∠D=30°,AE=6,
∴AD=2AE=12,
在Rt△OCD中,∵∠D=30°,
∴DO=2OC=DB+OB=DB+OC,
∴DB=OB=OC=AD=4,DO=8,
∴CD===4,
∴S△OCD===8,
∵∠D=30°,∠OCD=90°,
∴∠DOC=60°,
∴S扇形OBC=×π×OC2=,
∵S阴影=S△COD-S扇形OBC
∴S阴影=8-,
∴阴影部分的面积为8-.
22.解:(1)由题意知:p=30+x;
(2)由题意知:
活蟹的销售额为(1000-10x)(30+x)元,
死蟹的销售额为200x元,
∴Q=(1000-10x)(30+x)+200x=-10x2+900x+30000;
(3)设总利润为L=Q-30000-400x=-10x2+500x,
=-10(x2-50x)=-10(x2-50x+252-252)=-10(x-25)2+6250.
当x=25时,总利润最大,最大利润为6250元.
23.解:(1)∵在四边形ABCD中,对角线AC是黄金线,
∴△ABC是等腰三角形,
∵AB
∴AB=BC或AC=BC,
①当AB=BC时,
∵AB=AD=DC,
∴AB=BC=AD=DC,
又∵AC=AC,
∴△ABC≌△ADC,
此种情况不符合黄金四边形定义,
②AC=BC,
同理,BD=BC,
∴AC=BD=BC,易证得△ABD≌△DAC,△CAB≌△BDC,
∴∠DAC=∠DCA=∠ABD=∠ADB,∠BDC=∠BCD=∠CAB=∠CBA,
且∠DCA<∠DCB,
∴∠DAC<∠CAB
又由黄金四边形定义知:∠CAB=2∠DAC,
设∠DAC=∠DCA=∠ABD=∠ADB=x°,
则∠BDC=∠BCD=∠CAB=∠CBA=2x°,
∴∠DAB=∠ADC=3x°,
而四边形的内角和为360°,
∴∠DAB=∠ADC=108°,∠BCD=∠CBA=72°,
答:四边形ABCD各个内角的度数分别为108°,72°,108°,72°.
(2)由题意作图为:
(3)∵AB=BC,∠BAC=30°,
∴∠BCA=∠BAC=30°,∠ABC=120°,
ⅰ)当AC为黄金线时,
∴△ACD是等腰三角形,
∵AB=BC=CD,AC>BC,
∴AD=CD或AD=AC,
当AD=CD时,则AB=BC=CD=AD,
又∵AC=AC,
∴△ABC≌△ADC,如图3,此种情况不符合黄金四边形定义,
∴AD≠CD,
当AD=AC时,由黄金四边形定义知,∠ACD=∠D=15°或60°,
此时∠BAD=180°(不合题意,舍去)或90°(不合题意,舍去);
ⅱ)当BD为黄金线时,
∴△ABD是等腰三角形,
∵AB=BC=CD,
∴∠CBD=∠CDB,
①当AB=AD时,△BCD≌△BAD,
此种情况不符合黄金四边形定义;
②当AB=BD时,AB=BD=BC=CD,
∴△BCD是等边三角形,
∴∠CBD=60°,
∴∠A=30°或120°(不合题意,舍去),
∴∠ABC=180°(不合题意,舍去),
此种情况也不符合黄金四边形定义;
③当AD=BD时,设∠CBD=∠CDB=y°,则∠ABD=∠BAD=(2y)°或,
∵∠ABC=∠CBD+∠ABD=120°,
当∠ABD=2y°时,y=40,
∴∠BAD=2y=80°;
当时,y=80°,
∴;
由于∠ADB=180°-40°-40°=100°,
∠BDC=80°,
∴∠ADB+∠BDC=180°,
∴此种情况不能构成四边形,
综上所述:∠BAD的度数为80°.
24. 解:(1)如图1中,作DF⊥CA于F,
当t=2时,AP=2,DF=AD•sinA=5×=3,
∵AF=AD•cosA=5×=4,
∴PF=4-2=2,
∴PD===.
(2)如图2中,
在平行四边形PEQD中,
∵PE∥DQ,
∴PE∥AD,
∵AD=DQ.PE=DQ,
∴PE=AD,
∴四边形APED是平行四边形,
∴DE∥AP.
(3)①分三种情况讨论:
Ⅰ.当点E在CA上时,
DQ⊥CB(如图3所示),
∵∠ACB=Rt∠,CD是中线,∴CD=BD,∴CQ=CB=3即:t=
Ⅱ.当点E在CD上,且点Q在CB上时 (如图4所示),
过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,
易证Rt△PGE≌Rt△PHQ,∴PG=DH=4,
∴CG=4-t,GE=HQ=CQ-CH=2t-3,
∵CD=AD,∴∠DCA=∠DAC
∴在Rt△CEG中,tan∠ECG===,∴t=
Ⅲ.当点E在CD上,且点Q在AB上时(如图5所示),过点E作EF⊥CA于点F,
∵CD=AD,∴∠CAD=∠ACD.
∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,
∴PF=PC=,PE=DQ=11-2t,
∴在Rt△PEF中,cos∠EPF===
∴t=
综上所述,满足要求的t的值为或或.
②如图6中,PE交CD于E′,作E′G′⊥AC于G′,EG⊥AC于G.
当△PDE′的面积等于平行四边形PEDQD的面积的时,PE′:EE′=2:1,
由(Ⅱ)可知CG=4-t,GE=2t-3,
∴PG=8-t-(4-t)=4,
∵E′G′∥EG,
∴===,
∴PG′=,E′G′=(2t-3),CG′=8-t-=-t,
∵tan∠ECG==,
解得t=.
如图7中,当点Q在AB上时,PE交CD于E′,作E′G′⊥AC于G′.
∵△PDE′的面积等于平行四边形PEDQD的面积的,
∴PE′:EE′=2:1,
由Ⅲ可知,PG′=PC=4-t,PE′=DQ=(11-2t),
∵cos∠E′PG′==,
∴,
解得t=,
综上所述,当<时,请直接写出t的取值范围是<t<
猜你喜欢:
下一篇:2017成安数学中考模拟试题