学习啦>脑力开发>记忆力>快速记忆法>

记忆数学重点公式的科学方法

荣雪分享

  初中数学有些公式需要同学们重点记忆的,掌握一些记忆方法有助于数学公式的记忆,你知道有哪些科学的记忆方法吗?下面由学习啦小编给你带来关于记忆数学重点公式的科学方法,希望对你有帮助!

  科学方法一、三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

  ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A)

  ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))

  tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))

  ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)

  2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)

  -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2)

  cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB

  tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgB=sin(A+B)/sinAsinB

  -ctgA+ctgB=sin(A+B)/sinAsinB

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)

  12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  圆的标准方程(x-a) 2+(y-b) 2=r2 注:(a,b)是圆心坐标

  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  抛物线标准方程 y2=2px;y2=-2px; x2=2py; x2=-2py

  直棱柱侧面积 S=c*h

  斜棱柱侧面积 S=c'*h

  正棱锥侧面积 S=1/2c*h'

  正棱台侧面积 S=1/2(c+c')h'

  圆台侧面积 S=1/2(c+c')l=pi(R+r)l

  球的表面积 S=4pi*r2

  圆柱侧面积 S=c*h=2pi*h

  圆锥侧面积 S=1/2*c*l=pi*r*l

  弧长公式 l=a*r (a是圆心角的弧度数r >0 扇形)

  面积公式 s=1/2*l*r

  锥体体积公式 V=1/3*S*H

  圆锥体体积公式 V=1/3*pi*r2h

  斜棱柱体积 V=S'L (注:其中,S'是直截面面积,L是侧棱长)

  柱体体积公式 V=s*h

  圆柱体 V=pi*r2h

  科学方法二、《集合与函数》

  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

    3681055