中考数学常考知识点记忆方法技巧
初中的数学公式比较多,想要牢牢记住可能对大多数同学来说,有点困难,这时候科学的记忆方法就很重要了。下面由学习啦小编给你带来关于中考数学常考知识点记忆方法技巧,希望对你有帮助!
中考数学常考知识点记忆方法
最简根式的条件
最简根式三条件,
号内不把分母含,
幂指(数)根指(数)要互质,
幂指比根指小一点。
去、添括号法则
去括号、添括号,关键看符号。
括号前面是正号,去、添括号不变号。
括号前面是负号,去、添括号都变号。
因式分解
因式分一提(公因式)二套(公式)三分组,
细看几项不离谱,两项只用平方差,
三项十字相乘法,阵法熟练不马虎,
四项仔细看清楚,若有三个平方数(项),
就用一三来分组,否则二二去分组,
五项、六项更多项,二三、三三试分组,
以上若都行不通,拆项、添项看清楚。
分式方程的解法步骤
同乘最简公分母,化成整式写清楚,
求得解后须验根,原(根)留、增(根)舍别含糊,
特殊点的坐标特征
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
x轴上y为0,x为0在y轴。
象限角的平分线
象限角的平分线,
坐标特征有特点,
一、三横纵都相等,
二、四横纵确相反。
平行某轴的直线
平行某轴的直线,点的坐标有讲究,
直线平行x轴,纵坐标相等横不同;
直线平行于y轴,点的横坐标仍照旧。
对称点的坐标
对称点坐标要记牢,相反数位置莫混淆,
x轴对称y相反,y轴对称,x前面添负号;
原点对称最好记,横纵坐标变符号。
自变量的取值范围
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行。
函数图象的移动规律
若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀:
左右平移在括号,上下平移在末稍,
左正右负须牢记,上正下负错不了。
一次函数图象与性质
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
中考数学常考知识点记忆技巧
二次函数图象与性质
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见,
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线,
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般 式配方它就现,
横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,
一般、顶点、交点式,不同表达能互换。
反比例函数图象与性质
反比例函数有特点,双曲线相背离得远;
k为正,图在一、三(象)限,
k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别增;
线越长越近轴,永远与轴不沾边。
三角函数定义
三角函数有正弦、余弦、正切、余切,
它们实际是直角三角形的边的比值,
可以把两个字用/隔开,再一句话记定义:
正对鱼磷(余邻)直刀切
正:正弦或正切,
对:对边即正是对;
余:余弦或余弦,
邻:邻边即余是邻;
切是直角边。
合并同类项
合并同类项,法则不能忘,
只求系数和,字母、指数不变样。
特殊三角函数值
三十,四五,六十度,三角函数记牢固;
分母弦二切是三,分子要把根号添;
一二三来三二一,切值三九二十七;
递增正切和正弦,余弦函数要递减。
平行四边形的判定
要证平行四边形,两个条件才能行,
一证对边都相等,或证对边都平行,
一组对边也可以,必须相等且平行。
对角线,是个宝,互相平分“跑不了”,
对角相等也有用,“两组对角”才能成。
梯形问题的辅助线
移动梯形对角线,两腰之和成一线;
平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;
作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线。
添加辅助线歌
辅助线,怎么添?找出规律是关键,
题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连,
三角形两边中点,连接则成中位线;
三角形中有中线,延长中线翻一番。
圆的证明歌
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆最大弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连;
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加 个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形 有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,
两圆相切作公切,两圆相交连公弦。
圆中比例线段
遇等积,改等比,横找竖找定相似;
不相似,别生气,等线等比来代替,
遇等比,改等积,引用射影和圆幂,
平行线,转比例,两端各自找联系。
正多边形
份相等分割圆,n值必须大于三,
依次连接各分点,内接正n边形在眼前。
经过分点做切线,切线相交n个点。
n个交点做顶点,外切正n边形便出现。
正n边形很美观,它有内接、外切圆,
内接、外切都唯一,两圆还是同心圆,
它的图形轴对称,n条对称轴 都过圆心点,
如果n值为偶数,中心对称很方便。
正n边形做计算,边心距、半径是关键,
内切、外接圆半径,边心距、半径分别换,
分成直角三角形2n个整,依此计算便简单。
函数学习口决
二次函数抛物线,选定需要三个点,
a的正负开口判,c的大小y轴看,
△的符号最简便,x轴上数交点,
a、b同号轴左边抛物线平移a不变,
顶点牵着图象转,三种形式可变换,
配方法作用最关键。