学习啦>学习方法>小学学习方法>五年级方法>五年级数学>

五年级下册数学第三单元知识点整理归纳

梦荧分享

五年级数学下册第三单元的主题是长方体,那么同学们需要掌握的知识点有哪些呢?以下是小编准备的一些五年级下册数学第三单元知识点整理归纳,仅供参考。

五年级下册数学第三单元知识点整理归纳

五年级下册数学第三单元知识点

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

不同点

长方体

都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

b=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积= 长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a = a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

__形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S×(h现在- h原来)

V物体 =S×h升高

8、【体积单位换算】

大单位乘以进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位乘以进率=小单位

小单位÷进率=大单位

长度单位:

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10)

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100)

质量单位:

1吨=1000千克

1千克=1000克

人民币:

1元=10角 1角=10分 1元=100分

五年级下册数学第三单元长方体和正方体体积练习题

一、填空:

1、叫体积。

2、长方体体积公式是:;用字母表示:

3、正方体体积公式是:;用字母表示:

4、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。

5、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是占地面积是,表面积是,体积是。

6、一个长方体方钢,横截面是边长4厘米的正方形,长2分米,体积是立方厘米。

7、一个长方体水池占地24平方米,深3.5米,它能蓄水立方米。

8、一个长方体木料,长4米,如果把它截3段,表面积增加24平方分米,这根木料的.体积是。

9、用棱长3厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。

10、将一个长2米,宽3分米,高2.6分米的长方体木料,将它平均截成两段,表面积增加平方分米。

二、操作题:

右图是长方体展开图,测量所需数据,并求长方体体积。(取整厘米)

三、解决问题。

1、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)

2、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?

3、有一个底面积是250平方厘米、高16厘米的长方体,里面盛有8厘米深的水。现在把一块石头浸没到水里,水面上升3厘米。这块石头的体积是多少立方厘米?

4、一根方钢长3米,它的横截面是一个边长为4厘米的正方形,已知每立方分米的方钢重7.8千克,这根方钢重多少千克?

5、一张长方形铁皮长26分米,宽18分米,在它的四个角剪去边长3分米的正方形,焊成一个长方体,这个长方体的容积是多少升?

6、一个游泳池,长50米,宽20米,深2米,现在要给游泳池的四壁和底面抹水泥,抹水泥的面积是多少平方米?

7、一根铁丝,可以做成长8厘米,宽6厘米,高4厘米的长方体框架,如果用它来做一个正方体框架,做成的正方体框架棱长是多少厘米?

8、一块橡皮泥,先捏成一个棱长6厘米的正方体,后来,又改捏成一个长8厘米,宽3厘米的橡皮泥,这时高是多少厘米?

五年级数学学习方法

主动学习

主动预习,不仅能提前了解上课内容,在听课的时候有的放矢,还能锻炼孩子的自学能力。

具体做法:认真阅读教材,在老师的引导下学会看书,带着老师精心设计的思考题去预习。

如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的'知识去独立探究新的知识。

掌握思考问题的学习方法

比如说“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。

同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在家长师的引导下逐渐掌握解题时的思考方法。

这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;

从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。

有的孩子很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。

    1995806