学习啦>学习方法>高中学习方法>高三学习方法>高三数学>

最新高考数学知识点整理

文琼分享

高考复习,找到相关内容进行提前准备,抓住复习的主动权。那么数学如何复习?下面是小编整理分享的高考数学知识点归纳总结,欢迎阅读与借鉴,希望对你们有帮助!

高考数学知识点归纳总结

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点归纳总结:参数方程定义

一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)

并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

高考数学知识点归纳总结:参数方程

圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数

椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数

双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数

抛物线的参数方程x=2pt?y=2ptp表示焦点到准线的距离t为参数

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数

高考数学必考知识点:判断函数值域的方法

1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域

4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。

高考数学必考知识点:对数函数性质

定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}

值域:实数集R,显然对数函数无界。

定点:函数图像恒过定点(1,0)。

单调性:a>1时,在定义域上为单调增函数;

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数。

两句经典话:底真同对数正,底真异对数负。解释如下:

也就是说:若y=logab (其中a>0,a≠1,b>0)

当a>1,b>1时,y=logab>0;

当01时,y=logab<0;

当a>1,0

高考数学必考知识点:方差的性质

1.设C为常数,则D(C) = 0(常数无波动);

2. D(CX )=C2 D(X ) (常数平方提取);

证:

特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)

3.若X 、Y 相互独立,则

证:

记则前面两项恰为 D(X )和D(Y ),第三项展开后为

当X、Y 相互独立时,故第三项为零。

特别地独立前提的逐项求和,可推广到有限项。

最新高考数学知识点归纳总结相关文章:

最新高考数学知识点归纳总结

2020高考数学知识点归纳总结大全

2020高考数学知识点归纳总结

最新高考数学知识点归纳

2020高考数学知识点总结大全

2020年高考数学知识点总结

高考数学知识点归纳整理

高考数学考点2020大全总结

高考数学必考知识点考点2020大全总结

高考数学考点2020总结概括

    485567