学习啦>学习方法>高中学习方法>高考辅导资料>

高中数学知识点总结及公式大全

梦荧分享

高考数学涉及方方面面,涵盖的知识点也很多,数学公式也很多。那么该怎么做好复习呢?以下是小编整理的一些高中数学知识点总结及公式大全,欢迎阅读参考。

高中数学知识点总结及公式大全

高考必备的数学公式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba

|a-b||a|-|b| -|a|a|a|

一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1__X2=c/a 注:韦达定理

判别式

2-4ac=0 注:方程有两个相等的实根

2-4ac0 注:方程有两个不等的实根

2-4ac0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

小编推荐:高考数学公式大全 理科必备

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c__h

正棱锥侧面积 S=1/2c__h 正棱台侧面积 S=1/2(c+c)h

圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi__r2

圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l

弧长公式 l=a__r a是圆心角的弧度数r 0 扇形面积公式 s=1/2__l__r

锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h

斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长

柱体体积公式 V=s__h 圆柱体 V=pi__r2h

通项公式的求法:

(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;

(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;

(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。

已知递推公式求通项常见方法:

①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数,使an+1 +=q(an+)进而得到。

②已知a1=a,an=an-1+f(n)(n2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。

③已知a1=a,an=f(n)an-1(n2),求an时,利用累乘法求解。

高三数学知识点归纳总结

1.等差数列的定义

如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.

2.等差数列的通项公式

若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

3.等差中项

如果A=(a+b)/2,那么A叫做a与b的等差中项.

4.等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).

(2)若{an}为等差数列,且m+n=p+q,

则am+an=ap+aq(m,n,p,q∈N_).

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an.

(6)若n为偶数,则S偶-S奇=nd/2;

若n为奇数,则S奇-S偶=a中(中间项).

注意:

一个推导

利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

两个技巧

已知三个或四个数组成等差数列的一类问题,要善于设元.

(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

四种方法

等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通项公式法:验证an=pn+q;

(4)前n项和公式法:验证Sn=An2+Bn.

注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

高三数学知识点整理

1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:

(1)根据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”;

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;

(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;

(5)夹在两个平行平面间的平行线段相等;

(6)经过平面外一点只有一个平面和已知平面平行。

    1879207