玉林市初一数学上册期中试卷及答案(2)
6.( 3分)(2014秋•北流市期中)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是( )
A. 1.5×104美元 B. 1.5×105美元
C. 1.5×1012 美元 D. 1.5×1013美元
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答: 解:将15000亿用科学记数法表示为:1.5×1012.
故选:C.
点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7.下列结论正确的是( )
A. 近似数1.230和1.23精确度相同
B. 近似数79.0精确到个位
C. 近似数5万和50000精确度相同
D. 近似数3.1416精确到万分位
考点: 近似数和有效数字.
分析: 近似数的有效数字,就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,并且对一个数精确到哪位,就是对这个位后边的数进行四舍五入进行四舍五入.
解答: 解:A、近似数1.230有效数字有4个,而1.23的有效数字有3个.故该选项错误;
B、近似数79.0精确到十分位,它的有效数字是7,9,0共3个.故该选项错误;
C、近似数5万精确到万位,50000精确到个位.故该选项错误;
D、近似数3.1416精确到万分位.故该选项正确.
故选C.
点评: 本题考查了近似数与有效数字,主要考查了精确度的问题.
8.若|x﹣1|+|y+2|=0,则(x+1)(y﹣2)的值为( )
A. ﹣8 B. ﹣2 C. 0 D. 8
考点: 非负数的性质:绝对值.
分析: 根据绝对值得出x﹣1=0,y+2=0,求出x、y的值,再代入求出即可.
解答: 解:∵|x﹣1|+|y+2|=0,
∴x﹣1=0, y+2=0,
∴x=1,y=﹣2,
∴(x+1)(y﹣2)
=(1+1)×(﹣2﹣2)
=﹣8,
故选A.
点评: 本题考查了绝对值,有理数的加法的应用,能求出x、y的值是解此题的关键,难度不大.
9.一种金属棒,当温度是20℃时,长为5厘米,温度每升高或降低1℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10℃时金属棒的长度为( )
A. 5.005厘米 B. 5厘米 C. 4.995厘米 D. 4.895厘米
考点: 有理数的混合运算.
专题: 应用题.
分析: 根据题意列出算式,计算即可得到结果.
解答: 解:根据题意得:5﹣(20﹣10)×0.0005=5﹣0.005=4.995(厘米).
则温度为10℃时金属棒的长度为4.995厘米.
故选C.
点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
11.若k是有理数,则(|k|+k)÷k的结果是( )
A. 正数 B. 0 C. 负数 D. 非负数
考点: 有理数的混合运算.
分析: 分k>0,k<0及k=0分别进行计算.
解答: 解:当k>0时,原式=(k+k)÷k=2;
当k<0时,原式=(﹣k+k)÷k=0;
当k=0时,原式无意义.
综上所述,(|k|+k)÷k的结果是非负数.
故选D.
点评: 本题考查的是有理数的混合运算,在解答此题时要注意进行分类讨论.
12.四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=( )
A. 0 B. 1 C. 2 D. 3
考点: 有理数的乘法;有理数的加法.
分析: a,b,c,d为四个互不相等的整数,它们的积为4,首先求得a、b、c、d的值,然后再求得a+b+c+d.
解答: 解:∵a,b,c,d为四个互不相等的整数,它们的积为4,
∴这四个数为﹣1,﹣2,1,2.
∴a+b+c+d=﹣1+(﹣2)+1+2=0.
故选;A.
点评: 本题主要考查的是有理数的乘法和加法,根据题意求得a、b、c、d的值是解题的关键.
二、填空题.本大题共8小题,每小题3分,满分24分.请将答案直接写在题中的横线上
13.﹣5的相反数是 5 .
考点: 相反数.
分析: 根据相反数的定义直接求得结果.
解答: 解:﹣5的相反数是5.
故答案为:5.
点评: 本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.
14.﹣4 = ﹣ .
考点: 有理数的除法;有理数的乘法.
专题: 计算题.
分析: 原式利用除法法则变形,约分即可得到结果.
解答: 解:原式=﹣4× ×
=﹣ .
故答案为:﹣ .
点评: 此题考查了有理数的除法,有理数的乘法,熟练掌握运算法则是解本题的关键.
15.请写出一个系数为3,次数为4的单项式 3x4 .
考点: 单项式.
专题: 开放型.
分析: 根据单项式的概念求解.
解答: 解:系数为3,次数为4的单项式为:3x4.
故答案为:3x4.
点评: 本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.
16.三个连续整数中,n是最小的一个,这三个数的和为 3n+3 .
考点: 整式的加减;列代数式.
专题: 计算题.
分析: 根据最小的整数为n,表示出三个连续整数,求出之和即可.
解答: 解:根据题意三个连续整数为n,n+1,n+2,
则三个数之和为n+n+1+n+2=3n+3.
故答案为:3n+3
点评: 此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.
17.若a2+2a=1,则2a2+4a﹣1= 1 .
考点: 因式分解的应用;代数式求值.
分析: 先计算2(a2+2a)的值,再计算2a2+4a﹣1.
解答: 解:∵a2+2a=1,
∴2a2+4a﹣1=2(a2+2a)﹣1=1.
点评: 主要考查了分解因式的实际运用,利用整体代入求解是解题的关键.
18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是 3 .
考点: 数轴.
分析: 根据数轴的特点进行解答即可.
解答: 解:终点表示的数=0+7﹣4=3.
故答案为:3.
点评: 本题考查的是数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.
19.若多项式a2+2kab与b2﹣6ab的和不含ab项,则k= 3 .
考点: 整式的加减.
专题: 计算题.
分析: 根据题意列出关系式,合并后根据不含ab项,即可确定出k的值.
解答: 解:根据题意得:a2+2kab+b2﹣6ab=a2+(2k﹣6)ab+b2,
由和不含ab项,得到2k﹣6=0,即k=3,
故答案为:3
点评: 此题 考查了整式的加减,熟练掌握运算法则是解本题的关键.
20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有 2(n﹣1) 米.
考点: 列代数式.
分析: 第一棵树与第n棵树之间的间隔有n﹣1个间隔,每个间隔之间是2米,由此求得间隔的米数即可.
解答: 解:第一棵树与第n棵树之间的间隔有2(n﹣1)米.
故答案为:2(n﹣1).
点评:此题考查列代数式,求得间隔的个数是解决问题的关键.
三、本大题共3小题,每小题4分,满分12分
21.计算:22﹣4× +|﹣2|
考点: 有理数的混合运算.
分析: 先算乘法,再算加减即可.
解答: 解:原式=4﹣1+2
=5.
点评: 本题考查的是有理数的混合运算,熟知有理数混合运算顺序是解答此题的关键.
22.利用适当的方法计算:﹣4+17+(﹣36)+73.
考点: 有理数的加法.
分析: 先去括号,然后计算加法.
解答: 解:原式=﹣4+17﹣36+73
=﹣4﹣36+17+73
=﹣40+90
=50.
点评: 本题考查了有理数的加法.同号相加,取相同符号,并把绝对值相加.
23.利用适当的方法计算: + .
考点: 有理数的乘法.
分析: 逆用乘法的分配律,将 提到括号外,然后先计算括号内的部分,最后再算乘法即可.
解答: 解:原式= ×(﹣9﹣18+1)
= ×(﹣26)
=﹣14.
点评: 本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.
四、本大题共2小题,每小题5分,满分10分
24.已知:若a,b互为倒数,c,d互为相反数,e的绝对值为1,求:(ab)2014﹣3(c+d)2015﹣e2014的值.
考点: 代数式求值;相反数;绝对值;倒数.
分析: 由倒数、相反数,绝对值的定义可知:ab=1,c+d=0,e=±1,然后代入求值即可.
解答: 解:由已知得:ad=1,c+d=0,
∵|e|=1,
∴e=±1.
∴e2014=(±1)2014=1
∴原式=12014﹣3×0﹣1=0.
点评: 本题主要考查的是求代数式的值,相反数、倒数、绝对值的定义和性质,掌握互为相反数的两数之和为0、互为倒数的两数之积为1是解题的关键.
25.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.
考点: 整式的加减—化简求值.
专题: 计算题.
分析: 原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.
解答: 解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,
把a=﹣1,b=2代入得:6+4=10.
点评: 此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
五、本大题共2小题,每小题5分,满分10分
26.已知全国总人口约1.41×109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食?(结果用科学记数法表示)
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把 原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.
解答: 解:1.41×109×0.5
=0.705×109
=7.05×108(kg).
答:全国每天大约需要7.05×10 8kg粮食.
点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
27.某市出租车的收费标准为:不超过2前面的部分,起步价7元,燃油税1元,2千米到5千米的部分,每千米收1.5元,超过5千米的部分,每千米收2.5元,若某人乘坐了x(x大于5)千米的路程,请求出他应该 支付的费用(列出式子并化简)
考点: 列代数式.
分析: 某人乘坐了x(x>5)千米的路程的收费为W元,则W=不超过2km的费用+2km至5km的费用+超过5前面的费用就可以求出x与W的代数式.
解答: 解:7+1+3×1.5+2.5(x﹣5)
=8+4.5+2.5x﹣12.5.
=2.5x(元).
答:他应该支付的费用为2.5x元.
点评: 本题考查了列代数式,解答时表示出应付费用范围划分.
六、本大题共1小题,满分9分
2 8.学校对七年级女生进行了仰卧起坐的测试,以能做40个为标准,超过的次数用正数表示,不足的次数用负数表示,其中6名女生的成绩如下(单位:个):
2 ﹣1 0 3 ﹣2 1
(1)这6名女生共做了多少个仰卧起坐?
(2)这6名女生的达标率是多少?(结果精确到百分位)
考点: 正数和负数.
分析: (1)由已知条件直接列出算式即可;
(2)根据题意可知达标的有4人,然后用达标人数除以总人数即可.
解答: 解:(1)40×6+(2﹣1+0+3﹣2+1)
=240+3
=243(个).
答:这6名女生共做了243个仰卧起坐;
(2) ×100%≈0.67=67%.
答:这6名女生的达标率是67%.
点评: 本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
八、本大题共1小题,满分10分
30.一振子从A点开始左右水平来回的震动8次后停止,如果规定向右为正,向左为负,这8次震动的记录为(单位:毫米):+10,﹣9,+8,﹣7,+6,﹣5,+5,﹣4.
(1)该振子停止震动时在A点哪一侧?距离A点有多远?
(2)若该振子震动1毫米需用0.02秒,则完成上述运动共需多少秒?
考点: 正数和负数.
分析:(1)根据有理数的加法,可得答案;
(2)根据距离的和乘以单位距离所需的时间,可得总时间.
解答: 解:(1)10﹣9+8﹣7+6﹣5+5﹣4
=1+1+2
=4(毫米).
答:该振子停止震动时在A点右侧.距离A点有4毫米.
(2)(|+10|+|﹣9|+|+8|+|﹣7|+|+6|+|﹣5|+|+5|+|﹣4|)×0.02
=54×0.02
=1.08(秒).
答:完成上述的运动共需1.08秒.
点评: 本题考查了正数和负数,利用距离的和乘以单位距离所需的时间等于总时间,注意第二问计算的是距离的和.
猜你喜欢: