书墨聚八年级数学目标复习检测卷
通过做八年级数学目标复习检测卷可以弄懂在课堂上没有理解或没有完全理解的问题。学习啦为大家整理了书墨聚八年级数学的目标复习检测卷,欢迎大家阅读!
书墨聚八年级数学目标复习检测卷
一、选择题(12小题,每题3分,共36分)
1.能判定一个四边形是菱形的条件是( )
(A)对角线相等且互相垂直 (B)对角线相等且互相平分
(C)对角线互相垂直 (D)对角线互相垂直平分
2.下列命题是假命题的是( )
A.平行四边形的对边相等 B.四条边都相等的四边形是菱形
C.矩形的两条对角线互相垂直 D.等腰梯形的两条对角线相等
3.下列几组数据能作为直角三角形的三边长的是( )
(A) 2,3,4 (B) 5,3,4 (C) 4,6,9 (D) 5,11,13
4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是( )
A.众数是80 B.中位数是75 C.平均数是80 D.极差是15
5.下列图形中,既是轴对称又是中心对称的图形是( )
(A)正三角形 (B)平行四边形 (C)等腰梯形 (D)正方形
6.在平面直角坐标系中,直线 不经过( )
(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
7. 直角三角形两直角边边长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )
A.10cm B.3cm C.4cm D.5cm
8.如图,平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别为(0,0),
(5,0)、(2,3),则顶点C的坐标是( ).
(A) (3,7) (B) (5,3) (C) (7,3) (D)(8,2)
9.如图,将一张矩形纸片对折后再对折,然后沿着图中的虚线剪下,得到①、②两部分,将②展开后得到的平面图形是( )
(A) 矩形 (B)平行四边形 (C)梯形 (D) 菱形
10.如图,□ABCD的周长是28cm,△ABC的周长是22cm,
则AC的长为 ( )
(A) 6cm (B) 12cm
(C) 4cm (D) 8cm
11.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )
A.邻边不等的矩形 B.等腰梯形
C.有一角是锐角的菱形 D.正方形
12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A、 B、
C、 D、
二、填空题(每题3分,共18分)
13.若 ,那么 =_________
14.若菱形的两条对角线长分别为6cm,8cm,则其周长为_________cm。
15.对于一次函数 ,如果 ,那么 (填“>”、“=”、“<”)。
16.如图,在四边形ABCD中AB//CD,若加上AD//BC,则四边形ABCD为平行四边形。现在请你添加一个适当的条件: ,使得四边形AECF为平行四边形.( 图中不再添加点和线)
17.某校规定学生期末数学总评成绩由三部分构成:卷面成绩、课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、84,则她这学期期末数学总评成绩是 .
18.如图,在平面直角坐标系中,网格中每一个
小正方形的边长为1个单位长度,
(1) 请在所给的网格内画出以线段AB、BC为
边的菱形并写出点D的坐标 ;
(2)线段BC的长为 ;
(3)菱形ABCD的面积为 .
四、解答题(共66分)
19.如果 为 的算术平方根, 为 的立方根,求 的平方根。(6分)
20. (6分)
21.如图,已知∠AOB,OA=OB,点E在OB边上,
四边形AEBF是矩形.请你只用无刻度的直尺在图
中画出∠AOB的平分线(请保留画图痕迹).(8分)
22(8分)如图,已知平行四边形ABCD中,点 为 边的中点,
连结DE并延长DE交AB延长线于F. 求证: .(8分)
证明:
23.已知:如图,在△ABC中,D是BC边上的一点,连结AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连结DF。(8分)
(1) 求证:AF=DC;
(2) 若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论。
24(8分)某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票 (元)与行李质量 (千克)间的一次函数关系式为 ,现知贝贝带了60千克的行李,交了行李费5元。
(1)若京京带了84千克的行李,则该交行李费多少元?
(2)旅客最多可免费携带多少千克的行李?
25、(10分)如图,在平面直角坐标系xOy中,一次函数 与x轴、y轴分别相交于点A和点B,直线 经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.
(1)求△ABO的面积;
(2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。
26(12分)某件商品的成本价为15元,据市场调查得知,每天的销量y(件)与价格x(元)有下列关系:
销售价格x 20 25 30 50
销售量y 15 12 10 6
(1) 根据表中数据,在直角坐标系中描出实数对(x,y)的对应点,
并画出图象。
(2)猜测确定y与x间的关系式。
(3)设总利润为W元,试求出W与x之间的函数关系式,
若售价不超过30元,求出当日的销售单价定为多少时,才能
获得最大利润?
附加题(20分)如图,矩形ABCD中,AB=DC=6,AD=BC= ,动点P从点A出发,以每秒1个单位长度的速度在射线AB上运 动,设点P运动的时间是t秒,以AP为边作等边△APQ(使△APQ和矩形ABCD在射线AB的同侧).
(1)当t为何值时,Q点在线段DC上?当t为何值时,C点在线段PQ上?
(2)设AB的中点为N,PQ与线段BD相交于点M,是否存在△BMN为等腰三角形?若存在,求出t的值;若不存在,说明理由. (3)设△APQ与矩形ABCD重叠部分的面积为s,求s与t的函数关系式.
书墨聚八年级数学目标复习检测卷参考答案
一、选择题:(每小题3分,共36分)
1.D;2.c ;3.B; 4.B; 5.D;6.C; 7.D;8.C,9.C,10.D 11.D 12.A
二、填空题:(每小题4分,共16分)
13.2; 14.20; 15.<; 16.BE=DF等 17.88.8;
18. (1)图略——2分
(2)D(-2,1)——2分
(3) ——2分(4)15——2分
19.解:由题意,有 , ……2分
解得 . ……2分
∴ . ……1分
∴ .……1分
…4分
三.解答题
20.解:原式= =
21如图得满分8分,如果用尺规作图得4分(有画图痕迹),如 果用量角器等得2分.
23.解:(1)如图,由题意可得AF∥DC.∴∠AFE=∠DCE.
又∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点), ……2分
∴△AEF≌△DEC(AAS). ……3分
∴AF=DC. ……4分
(2)矩形. ……5分
由(1),有AF=DC且AF∥DC。∴AFDC是平行四边形.……7分
又AD=CF,∴AFDC是矩形(对角线相等的平行四边形是矩形).……8分
24.解:(1)将 代入了 中,解得 .……2分
∴一次函数的表达式为 .……3分
将 代入 中,解得 .
∴京京该交行李费9元. ……4分
(2)令 ,即,解得 ,解得 …………6分.
∴旅客最多可免费携带30千克行李. ……7分
答:京京该交行李费9元,旅客最多可免费携带30千克行李。……8分
25.(1)图象略 ……………………………3分
(2) ……………………………5分
(3) …………………………7分
………………………8分
当 时,因为 随 增大而增大,
∴当 时, ……………………10分
26.解:(1)在直线 中,令 ,得 ∴B(0,2).…1分
令 ,得 . ∴A(3,0). ……2分
∴ . ……4分
(2) . ……5分
∵点P在第一象限, ∴ .
解得 . ……7分
而点P又在直线 上,∴ .解得
∴P( ). ……9分
将点C(1,0)、P( ),代入 中,有 .∴
∴直线CP的函数表达式为 . ……12分
26.解:(1)① 当Q点在线段DC上时
∵ AD= , ∠ADQ=90°, ∠DAQ=30°
∴ DQ=x,则AQ=2x
∴ ∴ x=2
∴ AP=4 ∴ t=4
∴当 t=4秒时,Q点在线段DC上. …………………………………… 3分
② 当C点在线段PQ上时,点P在AB的延长线上,由题意得BP=2
∴ AP=6+2=8 ∴ t=8
∴当 t=8秒时,点C在线段PQ上. ……………………………………………… 5分
(2)△BMN为等腰三角形,有以下三种情况:
①当MN=BN时,∵∠NMB=∠NBM=30° ∴∠ANM=60°
∴ 此时,Q点在BD上,P点与N重合 ∴AP=AN=3 ∴t=3
②当BM=BN时,作MI⊥AB于I ∵ BM=BN=3
∴BM= MI= IP= BP=MP=
∴AP=6- ∴t=6-
③当 BM=NM时,BP=MP= NP ∴BP=1 AP=5 ∴t=5
综上所述,当t=3或6- 或5时,△BMN为等腰三角形………………… 8分
(3)①当0≤t≤4时,s=
②当4
③当6
即
④当t≥8时, ……………………………………………… 12分
猜你感兴趣: