学习啦>新闻资讯>教育>

2019中考数学得高分的学习方法揭秘

书荣分享

  数学要想得到高分其实并没有想象中那么困难。下面学习啦小编为大家解答2019中考数学得高分的学习方法揭秘,希望对你有所帮助!

  初中数学学习方法揭秘

  日本数学家米山国藏在名著《数学的精神、思想和方法》一书中曾论及数学的一个特征:

  数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.

  现在让我们举一组例题来帮助理解:

  例1 计算:(-2)+(-5)+4

  解:原式=-7+4

  =-3.

  例2 化简:-2x-5x+4x

  解:原式=(-2-5+4)x

  =-3x.

  例3 解方程:-2x-5x+4x+3=0.

  解:-3x+3=0

  3x=3

  ∴x=1.

  例4 解不等式:-2x-5x+4x+3>0.

  解:-3x+3>0

  3x<3

  &there4;x<1.

  例5 求直线y=-3x+3与x轴交点坐标.

  解:令y=0,有-3x+3=0.

  解得x=1.

  即直线y=-3x+3与x轴交点为(1,0).

  点评:相信例1~例3是六年级同学都能理解的,而它们正是初一数学上册《有理数》、《整式加减》、《一元一次方程》要学习的内容,例4是七年级下学期《一元一次不等式》的内容,例5是初二数学《一次函数》的内容.我们例举出来,正是想说明,数学知识就是这样一步一步的前进.试想,如果例1的计算不熟练甚至出错,那么化简"-2x-5x+4x"就容易出错,接着求解一元一次方程"-2x-5x+4x+3=0"时当然又会遇上困难,等到八年级所谓的新知识"函数"出现时,又需要解方程这个必备的技能发挥作用.

  这样看来,学习数学确实需要像米山国藏告诫的那样,一步一步向前走、向上登!而且只要长年累月地、不停地攀登,最终一定可以达到"摩天"的高度,一定可以达到连自己也会发出"我竟然也能来到这么高的地方"的惊叹的境界.

  但若不是这样一步一步地前进,而是企图一次跳过五、六级,则无论有多长的腿,也是做不到的.某位同学因懒惰或生病缺席而未学应掌握的定理、法则,就直接去学后面的内容,无论他多么聪明,都绝不可能学好.可以发现,数学的一大特征在于,若依其道而行,则无论什么人都能理解它,若反其道而行,则无论多么聪明的人都无法理解它.

  特别地,学习过一元一次不等式和一次函数知识的同学,看到这样的一串例题(例1~例5),是不是也应该能体会到学习数学就应该这样关联着、联系着,让学过的知识像一串葡萄那样轻松地被拎起来,这样我们也就达到了对数学知识的深刻理解!

  最后,我们用南京大学哲学系郑毓信教授关于数学学习的经验与大家共勉:

  基础知识不应求全,而应求联;

  基本技能不应求全,而应求变;

  基本思想不应求多,而应求用.

  提高数学成绩的四大技巧

  一 该记的记,该背的背,不要以为理解了就行

  有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。

  因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。

  对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。

  1、“方程”的思想

  数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度_间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。

  物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。

  所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

  2、“数形结合”的思想

  大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。

  3、“对应”的思想

  “对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。

  三 自学能力的培养是深化学习的必由之路

  在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

  我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

  自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

  因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

  学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

  四 自信才能自强

  在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

  具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

  数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

  解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。


    4165739