2017年黑龙江大庆中考数学模拟真题(2)
(2)若DE=6cm,AE=3cm,求⊙O的半径.
25.(10分)四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.
(1)①,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.
(2)②,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.
(3)③,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.
26.(12分),二次函数y=kx2-3kx-4k(k≠0)的图象与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,OC=OA.
(1)求点A坐标和抛物线的解析式;
(2)抛物线上是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过抛物线上的点Q作垂直于y轴的直线,交y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,直接写出点Q的坐标.
2017年黑龙江大庆中考数学模拟试题答案
1.C 2.B 3.B 4.C 5.C 6.C 7.B 8.A
9.B 解析:∵点E,F分别是CD和AB的中点,∴EF⊥AB,EF∥BC,∴EG是△DCH的中位线,∴DG=HG.由折叠的性质可得∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,∠BAH=∠HAG.易证△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,∴∠BAH=∠HAG=∠DAG=13∠BAD=30°.在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=23,∴CD=23.
10.D 解析:过点A作AD⊥x轴于点D,过点B作BE⊥y轴于点E,则易得△AOD∽△CBE.由两个三角形相似可得AOBC=ADCE=ODBE=3.设点A的横坐标为3a,则其纵坐标为3a2,则BE=OD3=a,CE=AD3=a2.∵直线BC是由直线AO向上平移4个单位得到的,∴CO=4,∴EO=4+a2,即点B的坐标为a,4+a2.又∵点A,B都在双曲线y=kx上,∴k=3a•3a2=a•4+a2,解得a=1(舍去0),∴k=92.
11.x(x-2)(x+2) 12.24
13.50(1-x)2=32 14.183 15.14 16.128
17.-43 解析:设点A(a,-a+1),B (b,-b+1)(a
18.①②④ 解析:∵AF是AB翻折而来,∴AF=AB=6.∵AD=BC=33,∴DF=AF2-AD2=3,∴F是CD中点,∴①正确;,连接OP.∵⊙O与AD相切于点P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴AOAF=OPDF.设OP=OF=x,则AO=6-x,6-x6=x3,解得x=2,即⊙O的半径为2,∴②正确;∵在Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°-∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③错误;,连接OG,PG,作OH⊥FG.∵∠AFD= 60°,OF=OG,∴△OFG为等边三角形.同理,△OPG为等边三角形.∴∠POG=∠FOG=60°,OH=32OG=3,S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=2×3-3212×2×3=32.∴④正确.故答案为①②④.
19.解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.(2分)∵EF平分∠AED,∴∠DEF=12∠AED=69°.(4分)又∵AB∥CD,∴∠AFE=∠DEF=69°.(6分)
20.解:(1)原式=1-4+2=-1.(3分)
(2)原式=a-1-1a-1÷(a-2)2a(a-1)=a-2a-1•a(a-1)(a-2)2=aa-2.(6分)
21.证明:∵四边形ABCD 是平行四边形,∴AD=BC,AB=DC,AD∥BC,∴AF∥EC.(3分)∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,(6分)∴四边形AECF是平行四边形,∴AE=CF.(8分)
22.解:(1)调查的总人数是:19÷38%=50(人).(2分)C组的人数有50-15-19-4=12(人),补全条形图所示.(4分)
(2)画树状图如下.(6分)共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=612=12.(8分)
23.解:(1)设该商家第一次购进机器人x个,依题意得11000x+10=240002x,解得x=100.(2分)经检验,x=100是所列方程的解,且符合题意.(3分)
答:该商家第一次购进机器人100个.(4分)
(2)设每个机器人的标价是a元.则依 题意得(100+200)a-11000-24000≥(11000+24000)×20%,解得a≥140.(7分)
答:每个机器人的标价至少是140元.(8分)
24.(1)证明:连接OD.(1分)∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE,∴DO∥MN.(3分)∵DE⊥MN,∴OD⊥DE,∴DE是⊙O的切线.(4分)
(2)解:连接CD.∵DE⊥MN,∴∠AED=90°.在Rt△AED中,DE=6cm,AE=3cm,∴AD=AE2+DE2=35cm.(6分)∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE,∴ACAD=ADAE,即AC=AD2AE,∴AC=15cm,∴OA=12AC=7.5cm,即⊙O的半径是7.5cm.(8分)
25.解:(1)AC=AD+AB.(1分)理由如下:在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°.∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(3分)
(2)(1)中的结论成立.(4分)理由如下:②,以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边与AB的延长线交于点E.∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE.∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE.∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE.∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(6分)
(3)结论:AD+AB=2AC.(7分)理由如下:③,过点C作CE⊥AC与AB的延长线交于点E.∵∠D+∠ABC=180°,∠DAB=90°,∴∠DCB= 90°.∵∠ACE=90°,∴∠DCA=∠BCE.又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∴∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.(9分)在Rt△ACE中,∠CAB=45°,∴AE=ACcos45°=2AC,∴AD+AB=2A C.(10分)
26.解:(1)当y=0时,kx2-3kx-4k=0.∵k≠0,∴x2-3x-4=0,解得x1=-1,x2=4,∴B(-1,0),A(4,0).(2分)∵OA=OC,∴C(0,4).把x=0,y=4代入y=kx2-3kx-4k,得k=-1,则抛物线的解析式为y=-x2+3x+4.(4分)
(2)①当∠PCA=90°时,过点P作PM⊥y轴于M,①,∴∠MCP+∠ACO=90°.∵∠OAC+∠ACO=90°,∴∠MCP=∠OAC.∵OA=OC,∴∠MCP=∠OAC=45°,∴∠MCP=∠MPC=45°,∴MC=MP. 设P(m,-m2+3m+4),则PM=CM=m,OM=-m2+3m+4,∴m+4=-m2+3m+4,解得m1=0(舍去),m2=2,∴-m2+3m+4=6,即P(2,6).(6分)
②当∠PAC=90°时,过点P作PN⊥y轴于N,设AP与y轴交于点F,②,则有PN∥x轴,∴∠FPN=∠OAP.∵∠CAO=45°,∴∠OAP=45°,∴∠FPN=45°,AO=OF=4,∴PN=NF,设P(n,-n2+3n+4),则PN=-n,ON=n2-3n-4,∴-n+4=n2-3n-4,解得n1=-2,n2=4(舍去),∴-n2+3n+4=-6,即P(-2,-6).
综上所述,点P的坐标是(2,6)或(-2,-6).(8分)
(3)当点Q的坐标是3+172,2或3-172,2时,线段EF的长度最短.(12分) 解析:③,∵∠OED=∠DFO=∠EOF=90°,∴四边形OEDF是矩形,∴EF=OD.∴当线段EF的长度最短时,OD最小,此时OD⊥AC.∵OA=OC,∴∠COD=∠AOD=45°,CD=AD.∵DF∥OC,∴△ADF∽△ACO,∴FDOC=ADAC=12,∴FD=12OC=2,∴yQ=2,解-x2+3x+4=2,得x1=3+172,x2=3-172,∴点Q的坐标是3+172,2或3-172,2.
猜你喜欢: