2017年海南中考数学练习试卷及答案
学生在中考数学的备考中要多做中考数学练习试题,多加复习才可以拿到好成绩,以下是小编精心整理的2017年海南中考数学练习试题及答案,希望能帮到大家!
2017年海南中考数学练习试题
一 、选择题:
1.计算(﹣3)﹣(﹣5)的结果等于( )
A.﹣2 B.2 C.﹣8 D.15
2.,已知Rt△ABC中,∠C=90°,AC=6,BC=8,则tanA的值为( )
A.0.6 B.0.8 C.0.75 D.
3.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ).
A.①② B.①③ C.②③ D.①②③
4.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为( )
A.2.36×108 B.2.36×109 C.2.36×1010 D.2.36×1011
5.一个几何体的三视图所示,则这个几何体是( )
A.三棱锥 B.三棱柱 C.圆柱 D.长方体
6.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:
指数运算 21=2 22=4 23=8 … 31=3 32=9 33=27 …
新运算 log22=1 log24=2 log28=3 … log33=1 log39=2 log327=3 …
根据上表规律,某同学写出了三个式子:
①log216=4;②log525=5;③log20.5=﹣1.其中正确的是( )
A.①② B.①③ C.②③ D.①②③
7.-6化简 ,可得( )
A.1 B.6 C.8 D.9
8.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为( )
A.1 B.﹣1 C.2 D.﹣2
9.表示a,b两数的点在数轴上位置所示,则下列判断错误的是( )
A.a+b<0 B.a﹣b>0 C.a×b>0 D.a<|b|
10.,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(﹣3,1) B.(4,1) C.(﹣2,1) D.(2,﹣1)
11.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为( )
A.8 B.﹣8 C.﹣7 D.5
12.已知二次函数y=ax2+bx+c的图象所示.
下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2
A.1 B.2 C.3 D.4
二 、填空题:
13.分解因式:3x2﹣x= .
14.计算:( ﹣ )× = .
15.学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是 .
16.若点P(a,b)在第二象限内,则直线y=ax+b不经过第 象限.
17.矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F,则△AFE与△BCF面积比等于 .
18. (1),若图中小正方形的边长为1,则△ABC的面积为 .
(2)反思(1)的解题过程,解决下面问题:若2 , , (其中a,b均为正数) 是一个三角形的三条边长,求此三角形的面积.
三 、解答题:
19.解不等式组: ,并把解集在数轴上表示出来.
20.为增强学生的身体素质,教育行政部门规定每位学生每天参加户外活动的平均时间不少于1小时. 为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,
请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)户外活动时间的众数和中位数分别是多少?
(4)若该市共有20000名学生,大约有多少学生户外活动的平均时间符合要求?
21.,已知圆⊙O内接ABC,AD为⊙O直径,AE⊥BC于E点,连接BD.
(1)求证:∠BAD=∠CAE;
(2)若AB=8,AC=6,⊙O的半径为5,求AE的长.
22.,某居民小区有一栋居民楼,在该楼的前面32米处要再盖一栋30米的新楼,现需了解新楼对采光的影响,当冬季正午的阳光与水平线的夹角为37°时,求新楼的影子在居民楼上有多高?(参考数值:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
23.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
24.在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:
(1)当t=3秒时,这时,P,Q两点之间的距离是多少?
(2)若△CPQ的面积为S,求S关于t的函数关系式.
(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?
25.,在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,tan∠ACB=2,将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF.点A的对应点为点D,点B的对应点为点E,点C的对应点为点F,抛物线y=ax2+bx+2的图象过点A,C,F.
(1)求抛物线所对应函数的表达式;
(2)在边DE上是否存在一点M,使得以O,D,M为顶点的三角形与△ODE相似,若存在,求出经过M点的反比例函数的表达式,若不存在,请说明理由;
(3)在x轴的上方是否存在点P,Q,使以O,F,P,Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上,若存在,请求出P,Q两点的坐标;若不能存在,请说明理由;
(4)在抛物线的对称轴上是否存在一点H,使得HA﹣HC的值最大,若存在,直接写出点H的坐标;若不存在,请说明理由.
2017年海南中考数学练习试题答案
1.B
2.D
3.B
4.C.
5.B
6.B
7.B
8.A
9.C
10.A
11.A
12.D.
>>>下一页更多“2017年海南中考数学练习试题及答案”