天津2023高考数学真题及参考答案
2023年天津高考,分为9门科目。分别是数学、数学、外语、物理、历史、化学、政治、地理,所有科目均使用自主命题,统称为“高考天津卷”。下面小编为大家带来天津2023高考数学真题及参考答案,希望对您有所帮助!
天津2023高考数学真题及参考答案
高考数学复习高分技巧
现阶段,学生已基本掌握中学数学知识体系,具备一定解题经验,对各种数学基本方法、思想都有一定认识,后期复习,应以深化理解基础知识,完善知识结构,并加强综合训练为主,提高数学思想,熟练掌握各类数学方法。
高考数学第一轮复习:抓基础要点
1.抓基础有三个要点
(1)保证综合训练题量,限时限量完成套题训练,在快速、准确、规范上下功夫。
(2)“抬起头来做题”,从清晰解题思路、优化解题步骤、寻找最佳切入点方面,做好解题的归纳小结。
(3)及时改错、补漏、拾遗。
2.从能力要求的角度跟进提升
(1)熟练三种数学语言(数学文字语言,数学符号语言,数学图形语言)的相互转换,
(2)强化训练细致严密的审题习惯。
(3)加强训练快捷灵活的`解题切入。
(4)要在确定合理运算方向,选择合理运算途径,优化组合公式法则,形成灵活善变的解题策略方面下功夫。
(5)对实际应用、开放探索问题,解选择题、填空题等策略问题也应适度训练。
3.做好心理调节
除数学能力外,过硬的心理素质也是影响考试成败的主要因素。学大教育一对一辅导老师指出,考生要找准自己的位置,确立合理的参照目标,始终看到自己的成绩和进步,形成积极的心理效应,以提高后期复习效率和应考能力。同时要明确,试卷必有难题,作答时要充满自信,明确试卷的难易对每个人都公平。
高考数学解题的技巧
一、 熟悉化策略所谓熟悉化策略。
就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。
从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。
因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:
(一)、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的角度去认识。
因此,根据自己的'知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。
因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
二、简单化策略
所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。
一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
三、解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
1、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
2、分类考察讨论:
在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。
对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
3、简单化已知条件:
有些数学题,条件比较抽象、复杂,不太容易入手。
这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。
这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
4、恰当分解结论:
有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
高考数学立体几何解题方法技巧
一、作图
作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系.所以作图是解决立体几何问题的第一步,作好图有利于问题的解决.
例1 已知正方体中,点P、E、F分别是棱AB、BC、的中点(如图1).作出过点P、E、F三点的正方体的截面.
分析:作图是学生学习中的一个弱点,作多面体的截面又是作图中的难点.学生看到这样的题目不知所云.有的学生连结P、E、F得三角形以为就是所求的截面.其实,作截面就是找两个平面的交线,找交线只要找到交线上的两点即可.观察所给的条件(如图2),发现PE就是一条交线.又因为平面ABCD//平面,由面面平行的性质可得,截面和面的交线一定和PE平行.而F是的中点,故取的中点Q,则FQ也是一条交线.再延长FQ和的延长线交于一点M,由公理3,点M在平面和平面的交线上,连PM交于点K,则QK和KP又是两条交线.同理可以找到FR和RE两条交线(如图2).因此,六边形PERFQK就是所求的截面.
二、读图
图形中往往包含着深刻的意义,对图形理解的程度影响着我们的正确解题,所以读懂图形是解决问题的重要一环.
例2 在棱长为a的正方体中,EF是棱AB上的一条线段,且EF=b<a,若q是上的定点,p在上滑动,则四面体pqef的体积( p="" ).
(A)是变量且有最大值 (B)是变量且有最小值 (C)是变量无最大最小值 (D)是常量
分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段EF的位置不定,点P在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体积要具备哪些条件?
仔细观察图形,应该以哪个面为底面?观察,我们发现它的形状位置是要变化的,但是底边EF是定值,且P到EF的距离也是定值,故它的面积是定值.再发现点Q到面PEF的距离也是定值.因此,四面体PQEF的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题.
三、用图
在立体几何的学习中,我们会遇到许多似是而非的结论.要证明它我们一时无法完成,这时我们可考虑通过构造一个特殊的图形来推翻结论,这样的图形就是反例图形.若我们的心中有这样的反例图形,那就可以帮助我们迅速作出判断.
例3 判断下面的命题是否正确:底面是正三角形且相邻两侧面所成的二面角都相等的三棱椎是正三棱锥.
分析:这是一个学生很容易判断错误的问题.大家认为该命题正确,其实是错误的,但大家一时举不出例子来加以说明.问题的关键是二面角相等很难处理.我们是否可以考虑用一个正三棱锥通过变形得到?
如图4,设正三棱锥的侧面等腰三角形PAB的顶角是,底角是,作的平分线,交PA于E,连接EC.可以证明是等腰三角形,所以AB=BE.同理EC=AB.那么,△EBC是正三角形,从而就是满足题设的三棱锥,但不是正三棱锥.
四、造图
在立体几何的学习中,我们可以根据题目的特征,精心构造一个相应的特殊几何模型,将陌生复杂的问题转化为熟悉简单的问题.
例4 设a、b、c是两两异面的三条直线,已知,且d是a、b的公垂线,如果,那么c与d的位置关系是( ).
(A)相交 (B)平行 (C)异面 (D)异面或平行
分析:判断空间直线的位置关系,最佳方法是构造恰当的几何图形,它具有直观和易于判断的优点.根据本题的特点,可以考虑构造正方体,如图5,在正方体 中,令AB=a,BC=d,.当c为直线时,c与d平行;当c为直线时,c与d异面,故选D.
五、拼图
空间基本图形由点、线、面构成,而一些特殊的图形也可以通过基本图形拼接得到.在拼图的过程中,我们会发现一些变和不变的东西,从中感悟出这个图形的特点,找出解决待求解问题的方法.
例5 给出任意的一块三角形纸片,要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种方案,并加以简要的说明.
分析:这是高考立体几何题中的一部分.这个设计新颖的题目,使许多平时做惯了证明、计算题的学生一筹莫展.这是一道动作题,但它不仅是简单的剪剪拼拼的动作,更重要的是一种心灵的“动作”,思维的“动作”.受题目叙述的影响,大家往往在想如何折起来?参考答案也是给了一种折的方法.那么这种方法究竟从何而来?其实逆向思维是这题的一个很好的切人点.我们思考:展开一个直三棱柱,如何还原成一个三角形?
把一个直三棱柱展开后可得到甲、乙两部分,甲内部的三角形和乙是全等的,甲的三角形外是宽相等的三个矩形.现在的问题是能否把乙分为三部分,补在甲的三个角上正好成为一个三角形(如图丙)?因为甲中三角形外是宽相等的矩形,所以三角形的顶点应该在原三角形的三条角平分线上,又由于面积要相等,所以甲中的三角形的顶点应该在原三角形的内心和顶点的连线段的中点上(如图丁).按这样的设计,剪开后可以折成一个直三棱柱.
六、变图
几何图形千变万化,在不断的变化中展示几何图形的魅力,在不断的变化中培养我们的能力,在有意无意的变化中开阔我们的思路.
例6 已知在三棱锥中,PA=a,AB=AC=2a,,求三棱锥的体积.
分析:此题的解决方法很多,但切割是不错的选择.
思路1 设D为AB的中点,依题意有:,,所以有:
此解法实际上是把三棱锥一分为二,三棱锥B-PAD的底面是直角三角形,高就是BD,从而大大简化了计算.这种分割的方法也是立体几何解题中的一种重要策略.它化复杂为简单,化未知为已知.
思路2 从点A出发的三条棱两两夹角为,故可补形为正四面体.
如图,延长AP至S,使PA=PS,连SB、SC,于是四面体S-ABC为边长等于2a的正四面体,而且
从上述的六个方面,我们可以看到,在立体几何的学习中如果我们能正确了解图形,合理利用图形,不断变化图形,一定可以使我们的学习更上一个台阶.