初中数学课本复习题有哪些
初中数学是众多科目中最让同学头疼的事情,想提高数学成绩也是不容易的。但是同学们也不要灰心,只要讲究一些学习的方法,初中数学也能得到很大的提升。
初中数学课本复习题
一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上.
1.(-2)×3的结果是
A.-6B.1C.-5D.6
2.在下面的四个几何体中,左视图与主视图不相同的几何体是
3.下列关于单项式-的说法中,正确的是
A.系数是-,次数是2B.系数是,次数是2
C.系数是-3,次数是3D.系数是-,次数是3
4.计算-t-2t-3t=
A.-4tB.-5tC.-6tD.-6t3
5.在梯形面积公式S=(a+b)h,已知S=30,a=6,h=4,则b的值为
A.10B.9C.6D.
6.4个小朋友在一起,每两人握一次手,他们一共握了6次手,12个小朋友在一起,他们一共握手的次数是
A.18B.60C.66D.144
7.已知一个多项式与2x2+5x的和等于2x2-x+2,则这个多项式为
A.4x2+6x+2B.-4x+2C.-6x+2D.4x+2
8.下列各式运算
(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;
(3)3xy-(xy-y2)=3xy-xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3
其中去括号不正确的有
A.(1)(2)B.(1)(2)(3)C.(2)(3)(4)D.(1)(2)(3)(4)
9.∠α的补角是它的3倍,则∠d等于
A.45°B.60°C.90°D.120°
10.数轴上A、B、C三点所代表的数分别是a、1、c,且.则下列选项中,表示A、B、C三点在数轴上的位置关系正确的是
二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.
11.用科学计数法表示6400,记为.
12.22-()=(-2)3.
13.一个三位数,它的百位上的数、十位上的数和个位上的数分别为a、b、5,则这个三位数为.
14.若x=2是关于x的方程ax+3=5的解,则a的值为.
15.已知线段AB=5cm点C为直线AB上一点,且BC=3cm,则
线段AC的长是cm.
16.一个角是25°42',则它的余角为.
17.当x=时,5(x-2)与2[7x-(4x-3)]的值相等.
18.如图,按此规律,第6行最后一个数字是16,第行最
后一个数是88.
三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.
19.(本题满分8分,每小题4分)计算:
(1)-11-28-(-3)×11;(2).
20.(本题满分8分,每小题4分)先化简,再求值:
(1)5a2b+4-3a2b-5ab+5-2a2b+6ab,其中a=4,b=-5;
(2),其中x=-2.
21.(本题满分8分,每小题4分)解下列方程:
(1)2(x+3)=5x;(2).
22.(本题满分5分)某班同学分组参加迎新年活动,原来每组8人,后来重新编组,每组6人,这样比原来增加2组.这个班共有多少人?
23.(本题满分6分)如图,点O在直线AB上,OC平分∠DOB.
若∠COB=36°.
(1)求∠DOB的大小;
(2)请你用量角器先画∠AOD的角平分线OE,再说明OE和OC的位置关系.
24.(本题满分6分)如图,延长线段AB到点C,使AB=5BC,D为AC的中点,DB=6,求线段AC的长.
25.(本题满分6分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位为元)
表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏多少?
26.(本题满分7分)已知y1=-x+3,y2=2x-3.
(1)当x取何值时,y1=y2;
(2)当x取何值时,y1的值比y2的值的2倍大8;
(3)先填表,后回答:
根据所填表格,回答问题:随着x的值增大,y1、y2的值分别有怎样的变化?
27.(本题满分7分)已知面包店的面包一个8元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜16元”,小明说:“我买这些就好了,谢谢”,根据两人的对话,判断结账时小明买了多少个面包?
28.(本题满分7分)如图,在数轴上的A1、A2、A3、A4…A20,这20个点所表示的数分别为a1、a2、a3、a4、…a20.若A1A2=A2A3=…=A19A20,且a3=20,=12.
(1)求a1的值;
(2)若=a2+a4,求x的值;
(3)求a20的值.
29.(本题满分8分)如图,AC⊥CB,垂足为C点,AC=CB=8cm,点Q是AC的中点,动点P由B点出发,沿射线BC方向匀速移动.点P的运动速度为2cm/s.设动点P运动的时间为ts.为方便说明,我们分别记三角形ABC面积为S,三角形PCQ的面积为S1,三角形PAQ的面积为S2,三角形ABP的面积为S3.
(1)S3=cm2(用含t的代数式表示);
(2)当点P运动几秒,S1=S,说明理由;
(3)请你探索是否存在某一时刻,使得S1=S2=S3,
若存在,求出t值,若不存在,说明理由.
初中数学重点复习资料
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。
8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
初中数学复习方法
课前要“预、做、复”
每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。
每节新内容学完后,要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
课上要“听、记、练”
首先,做好课前的准备。充分做好课前的准备工作是听好课基础。一般情况下,应做好三个方面的准备:
第一,知识准备。每一门学科,都有其严密的知识体系,尤其是数学,其严密性更强,它好像一条锁链,一环套一环,环环紧扣,前面的知识没有掌握好,后面的知识就难以理解。所以上课前要复习旧课并预习新课,了解新旧知识的联系,明确新课的学习要求。如果旧的知识接不上,就要想办法补上。
第二,物质准备。课前要准备好课本、文具在内的课堂上必需学习用品,如:课堂笔记本,草稿本,三角板,圆规,量角器等。
第三,精神准备。提前入座,稳定情绪,并可利用这短暂的时间作知识回顾,上一节学了什么?这堂课将学什么?这样有助于一上课就进入“角色”。
其次,听讲全神贯注。部分同学为什么学习成绩上不去?为什么课后做作业感到费力?其中一个重要的原因就是上课不专心听讲。有的同学上课静不下来,注意力容易分散,这就需要专门的训练。
再次,要主动获取知识。主动听课是指积极配合老师的每一个教学环节,主动思考。例如,老师在黑板上写出一道例题,有些同学等待教师讲解,而有些同学则不然,他立即开动脑筋,抢在老师讲解前分析问题的条件和结论,并考虑解题思路,久而久之,就能提高自己的解题能力和思维能力。
最后,还要做好课堂笔记。课堂上以听为主,以记为辅。记笔记求精求快,而不求多。课堂上主要记教材以外的补充内容、学习中的难点、老师的归纳小结及解题的方法技巧。课后再对笔记进行适当整理;就能将课堂所获得的知识纳入自己的知识仓库。
课后要“思、问、集”
课后作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想。如:方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用,做到绝不出现第二次类似错误。
猜你喜欢: