学习啦>学习方法>通用学习方法>复习方法>

人教版九年级数学一元二次方程与二次函数复习资料

欣怡分享

  九年级了,学习要用点心了,为了同学们能够学好一元二次方程与二次函数,下面是学习啦小编分享给大家的一元二次方程与二次函数复习资料的资料,希望大家喜欢!

  一元二次方程与二次函数复习资料一

  第22章 一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 —— 一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

  本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

  “22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

  (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

  (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

  (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

  “22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

  一元二次方程与二次函数复习资料二

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=|x₂-x₁|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  一元二次方程与二次函数复习资料三

  一、 选择题(每小题3分,共30分)

  1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )

  A、(x-p)2=5 B、(x-p)2=9

  C、(x-p+2)2=9 D、(x-p+2)2=5

  2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )

  A、-1 B、0 C、1 D、2

  3、若α、β是方程x2+2x-2005=0的两个实数根,则α2+3α+β的值为( )

  A、2005 B、2003 C、-2005 D、4010

  4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )

  A、k≤- B、k≥- 且k≠0

  C、k≥- D、k>- 且k≠0

  5、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )

  A、 x2+3x-2=0 B、x2-3x+2=0

  C、x2-2x+3=0 D、x2+3x+2=0

  6、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )

  A、-2 B、-1 C、0 D、1

  7、某城2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )

  A、300(1+x)=363 B、300(1+x)2=363

  C、300(1+2x)=363 D、363(1-x)2=300

  8、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )

  A、 x2+4x-15=0 B、x2-4x+15=0

  C、x2+4x+15=0 D、x2-4x-15=0

  9、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )

  A、2 B、0 C、-1 D、

  10、已知直角三角形x、y两边的长满足|x2-4|+ =0,则第三边长为( )

  A、 2 或 B、 或2

  C、 或2 D、 、2 或

  二、 填空题(每小题3分,共30分)

  11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .

  12、一元二次方程x2-3x-2=0的解是 .

  13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .

  14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .

  15、2005年某市人均GDP约为2003年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .

  16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm)

  17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.

  18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .

  19、如果方程3x2-ax+a-3=0只有一个正根,则 的值是 .

  20、已知方程x2+3x+1=0的两个根为α、β,则 + 的值为 .

  三、 解答题(共60分)

  21、解方程(每小题3分,共12分)

  (1)(x-5)2=16 (2)x2-4x+1=0

  (3)x3-2x2-3x=0 (4)x2+5x+3=0

  22、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且且(x1+2)(x2+2)=11,求a的值.

  23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0

  (1) 当m取何值时,方程有两个实数根?

  (2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.

  24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根

  (1) 求k的取值范围

  (2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.

  25、(8分)已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.

  26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2

  求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.

  27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克

  (1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?

  (2) 若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?

  一元二次方程单元测试题参考答案

  一、 选择题

  1~5 BCBCB 6~10 CBDAD

  提示:3、∵α是方程x2+2x-2005=0的根,∴α2+2α=2005

  又α+β=-2 ∴α2+3α+β=2005-2=2003

  二、 填空题

  11~15 ±4 25或16 10%

  16~20 6.7 , 4 3

  提示:14、∵AB、AC的长是关于x的方程x2-10x+m=0的两根

  ∴

  在等腰△ABC中

  若BC=8,则AB=AC=5,m=25

  若AB、AC其中之一为8,另一边为2,则m=16

  20、∵△=32-4×1×1=5>0 ∴α≠β

  又α+β=-3<0,αβ=1>0,∴α<0,β<0

  三、解答题

  21、(1)x=9或1(2)x=2± (3)x=0或3或-1

  (4)

  22、解:依题意有:x1+x2=1-2a x1•x2=a2

  又(x1+2)(x2+2)=11 ∴x1x2+2(x1+x2)+4=11

  a2+2(1-2a)-7=0 a2-4a-5=0

  ∴a=5或-1

  又∵△=(2a-1)2-4a2=1-4a≥0

  ∴a≤

  ∴a=5不合题意,舍去,∴a=-1

  23、解:(1)当△≥0时,方程有两个实数根

  ∴[-2(m+1)]2-4m2=8m+4≥0 ∴m≥-

  (2)取m=0时,原方程可化为x2-2x=0,解之得x1=0,x2=2

  24、解:(1)一元二次方程x2-4x+k=0有两个不相等的实数根

  ∴△=16-4k>0 ∴k<4

  (2)当k=3时,解x2-4x+3=0,得x1=3,x2=1

  当x=3时,m= - ,当x=1时,m=0

  25、解:由于方程为一元二次方程,所以c-b≠0,即b≠c

  又原方程有两个相等的实数根,所以应有△=0

  即4(b-a)2-4(c-b)(a-b)=0,(a-b)(a-c)=0,

  所以a=b或a=c

  所以是△ABC等腰三角形

  26、解:(1)1250(1-20%)=1000(m2)

  所以,该工程队第一天拆迁的面积为1000m2

  (2)设该工程队第二天,第三天每天的拆迁面积比前一天增长的百分数是x,则

  1000(1+x)2=1440,解得x1=0.2=20%,x2=-2.2,(舍去),所以,该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是20%.

  27、解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000

  解得x=5或x=10,为了使顾客得到实惠,所以x=5

  (2)设涨价x元时总利润为y,则

  y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125

  当x=7.5时,取得最大值,最大值为6125

  答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.

  (2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.

猜你喜欢:

1.数学二次函数手抄报精美图片

2.初三数学一元二次方程试题及答案

3.初三上册数学预习知识点归纳以及预习题

4.九年级数学二次函数所描述的关系教学反思

5.初中数学一元二次方程复习教案

    3720560