学习啦>学习英语>英语知识大全>

托福阅读方法:如何解答托福阅读否定信息类题型

楚薇2分享

为了帮助大家备考托福阅读,提高阅读分数,下面小编给大家带来托福阅读方法:如何解答托福阅读否定信息类题型,希望大家喜欢!

托福阅读方法:如何解答托福阅读否定信息类题型

托福阅读否定信息题(Negative Factual Information questions (0 to 2 questions per set )怎么做?我们先来看看它的提问方式和解答方法:

托福阅读否定信息题提问方式:

首先我们来介绍一下否定信息题,Negative Factual Information questions。这种题型的提问方式一般为:

l According to the passage,which of the following is NOT true of X?

l The author’s description of X mentions all of the following EXCEPT ?

托福阅读否定信息题解答方法:

在解答这种题目的时候首先要注意的是避免惯性思维的影响。在前面讲过的所有题目当中,或者是平时大家的做题习惯当中,我们都是看到与原文相符或者和原文一样的选项就选,但是到了这个题目,需要选择不属于题干内容或者与原文相反的选项,这是需要注意的一点。

一般这种题目的定位范围都在原文的某一个或者两个自然段,所以第一步需要的就是根据题目大定位到某个自然段,然后根据选项特征对应原文进行选题。

托福阅读否定信息题举例说明:

我们来看一个例题:

Paragraph 7: The Cognitive Approach. Cognitive psychologists assert that our behavior is influenced by our values, by the ways in which we interpret our situations and by choice. For example, people who believe that aggression is necessary and justified-as during wartime-are likely to act aggressively, whereas people who believe that a particular war or act of aggression is unjust, or who think that aggression is never justified, are less likely to behave aggressively.

Paragraph 8: One cognitive theory suggests that aggravating and painful events trigger unpleasant feelings. These feelings, in turn, can lead to aggressive action, but not automatically. Cognitive factors intervene. People decide whether they will act aggressively or not on the basis of factors such as their experiences with aggression and their interpretation of other people’s motives. Supporting evidence comes from research showing that aggressive people oftendistort other people’s motives. For example, they assume that other people mean them harm when they do not.

9. According to the cognitive approach described in paragraphs 7 and 8, all of the following may influence the decision whether to act aggressively EXCEPT a person’s

○Moral values

○Previous experiences with aggression

○Instinct to avoid aggression

○Beliefs about other people’s intentions

这道题目的定位范围是两个自然段,四个选项中有三个会influence the decision whether to act aggressively,有一个选项不会“影响一个人决定是否要表现的具有侵略性”,我们要选择这个选项。首先,在第七自然段的第二句“Cognitive psychologists assert that our behavior is influenced by our values, by the ways in which we interpret our situations and by choice.”中就提到moral values,对应A 选项。其次,在第八自然段中,第四句“People decide whether they will act aggressively or not on the basis of factors such as their experiences with aggression and their interpretation of other people’s motives.”中提到两个选项,一个是“their experiences with aggression”对应B选项,另外一个是“interpretation of other people’s motives”对应D选项。只有C选项的instinct没有提到,这道题目选择C选项。

托福阅读背景知识:人类的活动和动物的灭绝

托福阅读真题再现:

人类的活动和动物的灭绝

将overhunting,中间一个个科学家说不对,其实是climate change导致了,讲人类人前北美很多大型动物,但是人类出现以后大型动物都挂了,主要原因是人类的过度捕猎。接着说气候也是一个潜在原因,而且一些大型动物挂了,认识rodent并没有灭绝。有举例,在人类出现以后很短的时间内动物数量急剧下降,虽然这个事实被捕鱼大丰收的情况所disguise,一个明显的证据就是一种特殊的鱼到了食物链底端。

新东方老师解析:

本篇文章讲解了动物的灭绝的原因。相似的话题可以参考tpo中文章mass extiction,文章的理解重点是要把握好解释灭绝的原因,以及相对应所举的例子。按照不同的灭绝的原因梳理文章的结构。

相应的背景请参考下文:

As long as species have been evolving, species have been going extinct. It is estimated that over 99.9% of all species that ever lived are extinct. The average life-span of a species is 10 million years[citation needed], although this varies widely between taxa. There are a variety of causes that can contribute directly or indirectly to the extinction of a species or group of species. "Just as each species is unique", write Beverly and Stephen C. Stearns, "so is each extinction ... the causes for each are varied—some subtle and complex, others obvious and simple". Most simply, any species that cannot survive and reproduce in its environment and cannot move to a new environment where it can do so, dies out and becomes extinct. Extinction of a species may come suddenly when an otherwise healthy species is wiped out completely, as when toxic pollution renders its entire habitat unliveable; or may occur gradually over thousands or millions of years, such as when a species gradually loses out in competition for food to better adapted competitors. Extinction may occur a long time after the events that set it in motion, a phenomenon known as extinction debt.

Habitat degradation

Habitat degradation is currently the main anthropogenic cause of species extinctions. The main cause of habitat degradation worldwide is agriculture, with urban sprawl, logging, mining and some fishing practices close behind. The degradation of a species' habitat may alter the fitness landscape to such an extent that the species is no longer able to survive and becomes extinct. This may occur by direct effects, such as the environment becoming toxic, or indirectly, by limiting a species' ability to compete effectively for diminished resources or against new competitor species.

Habitat degradation through toxicity can kill off a species very rapidly, by killing all living members through contamination or sterilizing them. It can also occur over longer periods at lower toxicity levels by affecting life span, reproductive capacity, or competitiveness.

Habitat degradation can also take the form of a physical destruction of niche habitats. The widespread destruction of tropical rainforests and replacement with open pastureland is widely cited as an example of this; elimination of the dense forest eliminated the infrastructure needed by many species to survive. For example, a fern that depends on dense shade for protection from direct sunlight can no longer survive without forest to shelter it. Another example is the destruction of ocean floors by bottom trawling.

Diminished resources or introduction of new competitor species also often accompany habitat degradation. Global warming has allowed some species to expand their range, bringing unwelcome competition to other species that previously occupied that area. Sometimes these new competitors are predators and directly affect prey species, while at other times they may merely outcompete vulnerable species for limited resources. Vital resources including water and food can also be limited during habitat degradation, leading to extinction.

Predation, competition, and disease

In the natural course of events, species become extinct for a number of reasons, including but not limited to: extinction of a necessary host, prey or pollinator, inter-species competition, inability to deal with evolving diseases and changing environmental conditions (particularly sudden changes) which can act to introduce novel predators, or to remove prey. Recently in geological time, humans have become an additional cause of extinction (many people would say premature extinction) of some species, either as a new mega-predator or by transporting animals and plants from one part of the world to another. Such introductions have been occurring for thousands of years, sometimes intentionally (e.g. livestock released by sailors on islands as a future source of food) and sometimes accidentally (e.g. rats escaping from boats). In most cases, the introductions are unsuccessful, but when an invasive alien species does become established, the consequences can be catastrophic. Invasive alien species can affect native species directly by eating them, competing with them, and introducing pathogens or parasites that sicken or kill them; or indirectly by destroying or degrading their habitat. Human populations may themselves act as invasive predators. According to the "overkill hypothesis", the swift extinction of the megafauna in areas such as Australia (40,000 years before present), North and South America (12,000 years before present), Madagascar, Hawaii (300-1000 CE), and New Zealand (1300-1500 CE), resulted from the sudden introduction of human beings to environments full of animals that had never seen them before, and were therefore completely unadapted to their predation techniques.

Climate change

Extinction as a result of climate change has been confirmed by fossil studies. Particularly, the extinction of amphibians during the Carboniferous Rainforest Collapse, 305 million years ago. A 2003 review across 14 biodiversity research centers predicted that, because of climate change, 15–37% of land species would be "committed to extinction" by 2050. The ecologically rich areas that would potentially suffer the heaviest losses include the Cape Floristic Region, and the Caribbean Basin. These areas might see a doubling of present carbon dioxide levels and rising temperatures that could eliminate 56,000 plant and 3,700 animal species.

托福阅读背景知识:冰河时期形成原因

托福阅读真题再现:

冰河时期形成原因

第一段:地球周期一直被人们观测。但直到科学家M,才提出是地球的orbit三个因素共同发生造成的。Eccentric, tilt and orbit.。

第二段:三个理论。【好长一段】

第三段:三个角度变化要好多年。周期不能解释。

第四段:还有好多其他解释,有人说火山,有人说…有人说…

老师解析:

冰期地球表面覆盖有大规模冰川的地质时期。又称为冰川时期。两次冰期之间唯一相对温暖时期,称为间冰期。地球历史上曾发生过多次冰期,最近一次是第四纪冰期。 地球在40多亿年的历史中,曾出现过多次显著降温变冷,形成冰期。特别是在前寒武纪晚期、石炭纪至二叠纪和新生代的冰期都是持续时间很长的地质事件,通常称为大冰期。大冰期的时间尺度至少数百万年。大冰期内又有多次大幅度的气候冷暖交替和冰盖规模的扩展或退缩时期,这种扩展和退缩时期即为冰期和间冰期。

学者们提出过种.种解释,但至今没有得到令人感到满意的答案。归纳起来,主要有天文学和地球物理学成因说。

天文学成因说

天文学成因说主要考虑太阳、其他行星与地球间的相互关系。①太阳光度的周期变化影响地球的气候。太阳光度处于弱变化时,辐射量减少,地球变冷,乃至出现冰期气候。米兰科维奇认为,夏半年太阳辐射量的减少是导致冰期发生的可能因素。②地球黄赤交角的周期变化导致气温的变化。黄赤交角指黄道与天赤道的交角,它的变化主要受行星摄动的影响。当黄赤交角大时,冬夏差别增大,年平均日射率最小,使低纬地区处于寒冷时期,有利于冰川生成。

地球物理学成因说

地球物理学成因说影响因素较多,有大气物理方面的,也有地理地质方面的。①大气透明度的影响。频繁的火山活动等使大气层饱含着火山灰,透明度低,减少了太阳辐射量,导致地球变冷。②构造运动的影响。构造运动造成陆地升降、陆块位移、视极移动,改变了海陆分布和环流型式,可使地球变冷。云量、蒸发和冰雪反射的反馈作用,进一步使地球变冷,促使冰期来临。③大气中CO2的屏蔽作用。CO2能阻止或减低地表热量的损失。如果大气中CO2含量增加到今天的2~3倍,则极地气温将上升8~9℃;如果今日大气中的CO2含量减少55~60%,则中纬地带气温将下降4~5℃。在地质时期火山活动和生物活动使大气圈中CO2含量有很大变化,当CO2屏蔽作用减少到一定程度,则可能出现冰期。

托福阅读相关背景:

An ice age is a period of long-term reduction in the temperature of the Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Within a long-term ice age, individual pulses of cold climate are termed "glacial periods" (or alternatively "glacials" or "glaciations" or colloquially as "ice age"), and intermittent warm periods are called "interglacials".Glaciologically, ice age implies the presence of extensive ice sheets in the northern and southern hemispheres. By this definition, we are in an interglacial period - the holocene, of the ice age that began 2.6 million years ago at the start of the Pleistocene epoch, because the Greenland, Arctic, and Antarctic ice sheets still exist.

Variations in Earth's orbit (Milankovitch cycles)

The Milankovitch cycles are a set of cyclic variations in characteristics of the Earth's orbit around the Sun. Each cycle has a different length, so at some times their effects reinforce each other and at other times they (partially) cancel each other.

Past and future of daily average insolation at top of the atmosphere on the day of the summer solstice, at 65 N latitude.

There is strong evidence that the Milankovitch cycles affect the occurrence of glacial and interglacial periods within an ice age. The present ice age is the most studied and best understood, particularly the last 400,000 years, since this is the period covered by ice cores that record atmospheric composition and proxies for temperature and ice volume. Within this period, the match of glacial/interglacial frequencies to the Milankovi? orbital forcing periods is so close that orbital forcing is generally accepted. The combined effects of the changing distance to the Sun, the precession of the Earth's axis, and the changing tilt of the Earth's axis redistribute the sunlight received by the Earth. Of particular importance are changes in the tilt of the Earth's axis, which affect the intensity of seasons. For example, the amount of solar influx in July at 65 degrees north latitude varies by as much as 22% (from 450 W/m? to 550 W/m?). It is widely believed that ice sheets advance when summers become too cool to melt all of the accumulated snowfall from the previous winter. Some workers believe that the strength of the orbital forcing is too small to trigger glaciations, but feedback mechanisms like CO

2 may explain this mismatch.

While Milankovitch forcing predicts that cyclic changes in the Earth's orbital elements can be expressed in the glaciation record, additional explanations are necessary to explain which cycles are observed to be most important in the timing of glacial–interglacial periods. In particular, during the last 800,000 years, the dominant period of glacial–interglacial oscillation has been 100,000 years, which corresponds to changes in Earth's orbital eccentricity and orbitalinclination. Yet this is by far the weakest of the three frequencies predicted by Milankovitch. During the period 3.0–0.8 million years ago, the dominant pattern of glaciation corresponded to the 41,000-year period of changes in Earth's obliquity (tilt of the axis). The reasons for dominance of one frequency versus another are poorly understood and an active area of current research, but the answer probably relates to some form of resonance in the Earth's climate system.

The "traditional" Milankovitch explanation struggles to explain the dominance of the 100,000-year cycle over the last 8 cycles. Richard A. Muller, Gordon J. F. MacDonald, and others have pointed out that those calculations are for a two-dimensional orbit of Earth but the three-dimensional orbit also has a 100,000-year cycle of orbital inclination. They proposed that these variations in orbital inclination lead to variations in insolation, as the Earth moves in and out of known dust bands in the solar system. Although this is a different mechanism to the traditional view, the "predicted" periods over the last 400,000 years are nearly the same. The Muller and MacDonald theory, in turn, has been challenged by Jose Antonio Rial.

Another worker, William Ruddiman, has suggested a model that explains the 100,000-year cycle by the modulating effect of eccentricity (weak 100,000-year cycle) on precession (26,000-year cycle) combined with greenhouse gas feedbacks in the 41,000- and 26,000-year cycles. Yet another theory has been advanced by Peter Huybers who argued that the 41,000-year cycle has always been dominant, but that the Earth has entered a mode of climate behavior where only the second or third cycle triggers an ice age. This would imply that the 100,000-year periodicity is really an illusion created by averaging together cycles lasting 80,000 and 120,000 years. This theory is consistent with a simple empirical multi-state model proposed by Didier Paillard. Paillard suggests that the late Pleistocene glacial cycles can be seen as jumps between three quasi-stable climate states. The jumps are induced by the orbital forcing, while in the early Pleistocene the 41,000-year glacial cycles resulted from jumps between only two climate states. A dynamical model explaining this behavior was proposed by Peter Ditlevsen. This is in support of the suggestion that the late Pleistocene glacial cycles are not due to the weak 100,000-year eccentricity cycle, but a non-linear response to mainly the 41,000-year obliquity cycle.

Changes in Earth's atmosphere

There is considerable evidence that over the very recent period of the last 100–1000 years, the sharp increases in human activity, especially the burning of fossil fuels, has caused the parallel sharp and accelerating increase in atmospheric greenhouse gases which trap the sun's heat. The consensus theory of the scientific community is that the resulting greenhouse effect is a principal cause of the increase in global warming which has occurred over the same period, and a chief contributor to the accelerated melting of the remaining glaciers and polar ice. A 2012 investigation finds that dinosaurs released methane through digestion in a similar amount to humanity's current methane release, which "could have been a key factor" to the very warm climate 150 million years ago.

There is evidence that greenhouse gas levels fell at the start of ice ages and rose during the retreat of the ice sheets, but it is difficult to establish cause and effect (see the notes above on the role of weathering). Greenhouse gas levels may also have been affected by other factors which have been proposed as causes of ice ages, such as the movement of continents and volcanism.

The Snowball Earth hypothesis maintains that the severe freezing in the late Proterozoic was ended by an increase in CO2 levels in the atmosphere, and some supporters of Snowball Earth argue that it was caused by a reduction in atmospheric CO2. The hypothesis also warns of future Snowball Earths.

In 2009, further evidence was provided that changes in solar insolation provide the initial trigger for the Earth to warm after an Ice Age, with secondary factors like increases in greenhouse gases accounting for the magnitude of the change.

William Ruddiman has proposed the early anthropocene hypothesis, according to which the anthropocene era, as some people call the most recent period in the Earth's history when the activities of the human species first began to have a significant global impact on the Earth's climate and ecosystems, did not begin in the 18th century with the advent of the Industrial Era, but dates back to 8,000 years ago, due to intense farming activities of our early agrarian ancestors. It was at that time that atmospheric greenhouse gas concentrations stopped following the periodic pattern of the Milankovitch cycles. In his overdue-glaciationhypothesis Ruddiman states that an incipient glacial would probably have begun several thousand years ago, but the arrival of that scheduled glacial was forestalled by the activities of early farmers.

At a meeting of the American Geophysical Union (December 17, 2008), scientists detailed evidence in support of the controversial idea that the introduction of large-scale rice agriculture in Asia, coupled with extensive deforestation in Europe began to alter world climate by pumping significant amounts of greenhouse gases into the atmosphere over the last 1,000 years. In turn, a warmer atmosphere heated the oceans making them much less efficient storehouses of carbon dioxide and reinforcing global warming, possibly forestalling the onset of a new glacial age.


托福阅读方法:如何解答托福阅读否定信息类题型相关文章:

教你搞定托福阅读否定事实信息题

托福阅读否定事实信息题该怎么做

托福阅读否定细节题怎么做解题策略

巧解托福阅读事实信息题

托福阅读题型总结题如何解

托福阅读题型讲解

托福阅读分类填表题解题技巧别错过

托福阅读题型之细节题解题技法

托福阅读出题规律解析总结

托福阅读题型你知多少

    471151