学习啦>脑力开发>思维方式>思维训练>

学生思维训练题有哪些

杨杰2分享

  学生思维训练作为人类社会的一种社会实践活动 ,不仅仅是心理学研究的内容 ,更重要的是它也属于管理学研究的范畴。下面小编为你整理学生思维训练题,希望能帮到你。

学生思维训练题有哪些

  有关于5年级的思维训练题一

  1、765×213÷27+765×327÷27

  2、(9999+9997+…+9001)-(1+3+…+999)

  3、19981999×19991998-19981998×19991999

  4、(873×477-198)÷(476×874+199)

  5、2000×1999-1999×1998+1998×1997-1997×1996+…+2×1

  6、297+293+289+…+209

  7、计算:有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个?

  8、修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?

  9、有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。

  10、有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。

  11、有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?

  12、小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

  13、妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

  14、乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

  15、五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?

  16、甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?

  17、轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?

  18、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

  19、小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?

  20、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。

  21、甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?

  22、一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?

  23、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?

  24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:

  25、在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?

  26、一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?

  27、甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:

  (1)火车速度是甲的速度的几倍?

  (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?

  28、辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。求甲、乙两地的距离。

  29、完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天?

  30、一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?

  有关于5年级的思维训练题二

  31、做一个长8分米,宽4分米,高3分米的鱼缸,至少需要玻璃( ),最多可装水( )。

  32、如果ab 分子加上2a,要使分数的大小不变,分母应该扩大( )倍。

  33、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄相乘之积是360,其中年龄最大的是( )岁。

  34、一筐苹果,如果平分给4小朋友多出3个苹果;如果平分给5个小朋友又多出4个苹果;如果平分给6小朋友则又少1个苹果。这筐苹果最少有( )个。

  35、从0,6,5,7四个数字中任选三个,组成能同时被2,3,5整除的三位数。这样的三位数共有( )个。

  36、如果今天星期四,那么再过2856426×9198356+98765天是星期( )。

  37、40分钟等于( )小时。

  38、商店运来一批蔬菜,黄瓜占总数的415 ,西红柿占总数的25 ,其它的是土豆,土豆占这批蔬菜的( )。

  39、把450个苹果平均分成若干堆(不能只一堆,也不能每堆只一个苹果)。共有( )种不同的分法。

  40、林林前几次数学测验的平均成绩是85分,这一次要考100分,才能把平均成绩提高到88分,这一次是第几次测验?

  有关于5年级的思维训练题三

  51、一副扑克牌共54张,最上面的一张是红桃K。如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?

  解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。又因为每次移动12张牌,所以至少移动108÷12=9(次)。

  52、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?

  解:爷爷70岁,小明10岁。提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。(60岁)

  53、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

  解:11,13,17,23,37,47。

  54、在放暑假的8月份,小明有五天是在姥姥家过的。这五天的日期除一天是合数外,其它四天的日期都是质数。这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。问:小明是哪几天在姥姥家住的?

  解:设这个合数为a,则四个质数分别为(a-1),(a+1),( 2a-1),(2a+1)。因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31。经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日。

  55、有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

  解:3,74;18,37。

  提示:三个数字相同的三位数必有因数111。因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。

  56、在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开。问:长度是1厘米的短木棍有多少根?

  解:因为100能被5整除,所以可以看做都是自左向右染色。因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现。一个周期的情况如下图所示:

  由上图知道,一个周期内有2根1厘米的木棍。所以三个周期即90厘米有6根,最后10厘米有1根,共7根。

  57、某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。问:商品的购入价是多少元?

  解:8000元。按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。

  58、甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙两桶哪桶水多?

  解:乙桶多。

  59、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?

  解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人),

  只做对一道题的人数为25-11-1=13(人)。

  60、学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项。根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品。问:最多有几人获奖?最少有几人获奖?

  解:共有13人次获奖,故最多有13人获奖。又每人最多参加两项,即最多获两项奖,因此最少有7人获奖。


思维训练相关文章:

1.思维训练

2.逻辑思维训练500题

3.逻辑思维训练题目及答案

4.宝宝逻辑思维训练

5.自闭症孩子的教育思考:浅谈思维训练

    755185