学习啦>学习方法>高中学习方法>高三学习方法>高三生物>

高三生物选修一必背知识点

赞锐2分享

正如你现在根据自己的爱好想确定某个专业领域的研究,那就应该你现在就读的学校历年升学情况,估算出应该在年级的排名,这就是你现阶段的目标,并争取实现。下面是小编给大家带来的高三生物选修一知识点,在浩瀚的学海里,助你一臂之力!

高三生物选修一知识点1

吞噬细胞(即白细胞):

来源:造血干细胞。

功能:处理抗原,呈递给T细胞。吞噬“抗原—抗体”结合体,消化消灭抗原。

拜尔(A.P2017年高中生物必修三知识点l)实验是怎样做的?证明了什么?(P-47图3-3)

⑴、切去胚芽鞘的尖端,再侧放在切去尖端的胚芽鞘上;黑暗中,胚芽鞘朝向侧放尖端的对侧弯曲。

⑵、证明:胚芽鞘的弯曲生长是因为尖端产生的刺激在其下部分布不均匀造成的。

荷兰科学家(F.W.Went)在试验中有什么发现?他的试验证明了什么?

⑴、1928年温特试验及发现:(P-47图3-4)

①、切取胚芽鞘尖端,置于琼脂块上数小时后,移走胚芽鞘尖端,将琼脂切成小快。②、把接触过胚芽鞘尖端的琼脂小快放置在切去尖端的胚芽鞘的一侧。

发现:胚芽鞘朝向放置琼脂小块的对侧弯曲。

③、对照:把未接触过胚芽鞘尖端的琼脂小快放置在切去尖端的胚芽鞘的一侧。发现:胚芽鞘不弯曲。

⑵、温特试验结论:

①、胚芽鞘尖端确实产生某种物质。②、该物质能从胚芽鞘尖端运输到尖端下部。③、该物质能引起尖端下部某些部分生长。

浆细胞:

来源:B细胞或记忆B细胞。

功能:分泌抗体。

记忆细胞:

来源:记忆B细胞来源于B细胞的增殖分化。记忆T细胞来源于T细胞的增殖分化。功能:识别抗原,增殖分化成相应的效应细胞。

高三生物选修一知识点2

名词:

1、染色体变异:光学显微镜下可见染色体结构的变异或者染色体数目变异。

2、染色体结构的变异:指细胞内一个或几个染色体发生片段的缺失(染色体的某一片段消失)、增添(染色体增加了某一片段)、颠倒(染色体的某一片段颠倒了180o)或易位(染色体的某一片段移接到另一条非同源染色体上)等改变

3、染色体数目的变异:指细胞内染色体数目增添或缺失的改变。

4、染色体组:一般的,生殖细胞中形态、大小不相同的一组染色体,就叫做一个染色体组。细胞内形态相同的染色体有几条就说明有几个染色体组。5、二倍体:凡是体细胞中含有两个染色体组的个体,就叫~。如.人果,蝇,玉米.绝大部分的动物和高等植物都是二倍体

.6、多倍体:凡是体细胞中含有三个以上染色体组的个体,就叫~。如:马铃薯含四个染色体组叫四倍体,普通小麦含六个染色体组叫六倍体(普通小麦体细胞6n,42条染色体,一个染色体组3n,21条染色体。),

7、一倍体:凡是体细胞中含有一个染色体组的个体,就叫~。

8、单倍体:是指体细胞含有本物种配子染色体数目的个体。

9、花药离体培养法:具有不同优点的品种杂交,取F1的花药用组织培养的方法进行离体培养,形成单倍体植株,用秋水仙素使单倍体染色体加倍,选取符合要求的个体作种。

语句:

1、染色体变异包括染色体结构的变异(染色体上的基因的数目和排列顺序发生改变),染色体数目变异。

2、多倍体育种:a、成因:细胞有丝_过程中,在染色体已经复制后,由于外界条件的剧变,使细胞_停止,细胞内的染色体数目成倍增加。(当细胞有丝_进行到后期时破坏纺锤体,细胞就可以不经过末期而返回间期,从而使细胞内的染色体数目加倍。)b、特点:营养物质的含量高;但发育延迟,结实率低。c、人工诱导多倍体在育种上的应用:常用方法---用秋水仙素处理萌发的种子或幼苗;秋水仙素的作用---秋水仙素抑制纺锤体的形成;实例:三倍体无籽西瓜(用秋水仙素处理二倍体西瓜幼苗得到四倍体西瓜;用二倍体西瓜与四倍体西瓜杂交,得到三倍体的西瓜种子。三倍体西瓜联会紊乱,不能产生正常的配子。)、八倍体小黑麦。

3、单倍体育种:形成原因:由生殖细胞不经过受精作用直接发育而成。例如,蜜蜂中的雄蜂是单倍体动物;玉米的花粉粒直接发育的植株是单倍体植物。特点:生长发育弱,高度不孕。单倍体在育种工作上的应用常用方法:花药离体培养法。意义:大大缩短育种年龄。单倍体的优点是:大大缩短育种年限,速度快,单倍体植株染色体人工加倍后,即为纯合二倍体,后代不再分离,很快成为稳定的新品种,所培育的种子为绝对纯种。

4、一般有几个染色体组就叫几倍体。如果某个体由本物种的配子不经受精直接发育而成,则不管它有多少染色体组都叫“单倍体”。

5、生物育种的方法总结如下:①诱变育种:用物理或化学的因素处理生物,诱导基因突变,提高突变频率,从中选择培育出优良品种。实例---青霉素高产菌株的培育。②杂交育种:利用生物杂交产生的基因重组,使两个亲本的优良性状结合在一起,培育出所需要的优良品种。实例---用高杆抗锈病的小麦和矮杆不抗锈病的小麦杂交,培育出矮杆抗锈病的新类型。③单倍体育种:利用花药离体培养获得单倍体,再经人工诱导使染色体数目加倍,迅速获得纯合体。单倍体育种可大大缩短育种年限。④多倍体育种:用人工方法获得多倍体植物,再利用其变异来选育新品种的方法。(通常使用秋水仙素来处理萌发的种子或幼苗,从而获得多倍体植物。)实例---三倍体无籽西瓜和八倍体小黑麦的培育(6n普通小麦与2n黑麦杂交得4n后代,再经秋水仙素使染色体数目加倍至8n,这就是8倍体小黑麦)。

高三生物选修一知识点3

发酵工程的概念和内容

发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。发酵工程的内容包括菌种的选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离提纯等方面。

(1)“发酵”有“微生物生理学严格定义的发酵”和“工业发酵”,词条“发酵工程”中的“发酵”应该是“工业发酵”。

(2)工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺被称为“发酵工艺”。为实现工业化生产,就必须解决实现这些工艺(发酵工艺)的工业生产环境、设备和过程控制的工程学的问题,因此,就有了“发酵工程”。

(3)发酵工程是用来解决按发酵工艺进行工业化生产的工程学问题的学科。发酵工程从工程学的角度把实现发酵工艺的发酵工业过程分为菌种、发酵和提炼(包括废水处理)等三个阶段,这三个阶段都有各自的工程学问题,一般分别把它们称为发酵工程的上游、中游和下游工程。

(4)微生物是发酵工程的灵魂。近年来,对于发酵工程的生物学属性的认识愈益明朗化,发酵工程正在走近科学。

(5)发酵工程最基本的原理是发酵工程的生物学原理。

(6)发酵工程有三个发展阶段。

现代意义上的发酵工程是一个由多学科交叉、融合而形成的技术性和应用性较强的开放性的学科。发酵工程经历了“农产手工加工——近代发酵工程——现代发酵工程”三个发展阶段。

发酵工程发源于家庭或作坊式的发酵制作(农产手工加工),后来借鉴于化学工程实现了工业化生产(近代发酵工程),最后返璞归真以微生物生命活动为中心研究、设计和指导工业发酵生产(现代发酵工程),跨入生物工程的行列。

原始的手工作坊式的发酵制作凭借祖先传下来的技巧和经验生产发酵产品,体力劳动繁重,生产规模受到限制,难以实现工业化的生产。于是,发酵界的前人首先求教于化学和化学工程,向农业化学和化学工程学习,对发酵生产工艺进行了规范,用泵和管道等输送方式替代了肩挑手提的人力搬运,以机器生产代替了手工操作,把作坊式的发酵生产成功地推上了工业化生产的水平。发酵生产与化学和化学工程的结合促成了发酵生产的第一次飞跃。

通过发酵工业化生产的几十年实践,人们逐步认识到发酵工业过程是一个随着时间变化的(时变的)、非线性的、多变量输入和输出的动态的生物学过程,按照化学工程的模式来处理发酵工业生产(特别是大规模生产)的问题,往往难以收到预期的效果。从化学工程的角度来看,发酵罐也就是生产原料发酵的反应器,发酵罐中培养的微生物细胞只是一种催化剂,按化学工程的正统思维,微生物当然难以发挥其生命特有的生产潜力。于是,追溯到作坊式的发酵生产技术的生物学内核(微生物),返璞归真而对发酵工程的属性有了新的认识。发酵工程的生物学属性的认定,使发酵工程的发展有了明确的方向,发酵工程进入了生物工程的范畴。

发酵工程是指采用工程技术手段,利用生物(主要是微生物)和有活性的离体酶的某些功能,为人类生产有用的生物产品,或直接用微生物参与控制某些工业生产过程的一种技术。人们熟知的利用酵母菌发酵制造啤酒、果酒、工业酒精,乳酸菌发酵制造奶酪和酸牛奶,利用真菌大规模生产青霉素等都是这方面的例子。随着科学技术的进步,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的应用前景。例如,用基因工程的方法有目的地改造原有的菌种并且提高其产量;利用微生物发酵生产药品,如人的胰岛素、干扰素和生长激素等。

已经从过去简单的生产酒精类饮料、生产醋酸和发酵面包发展到今天成为生物工程的一个极其重要的分支,成为一个包括了微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。现代发酵工程不但生产酒精类饮料、醋酸和面包,而且生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,生产天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶、维生素和单细胞蛋白等。

从广义上讲,发酵工程由三部分组成:是上游工程,中游工程和下游工程。其中上游工程包括优良种株的选育,最适发酵条件(pH、温度、溶氧和营养组成)的确定,营养物的准备等。中游工程主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。这里要有严格的无菌生长环境,包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;还有种子培养和生产培养的不同的工艺技术。此外,根据不同的需要,发酵工艺上还分类批量发酵:即一次投料发酵;流加批量发酵:即在一次投料发酵的基础上,流加一定量的营养,使细胞进一步的生长,或得到更多的代谢产物;连续发酵:不断地流加营养,并不断地取出发酵液。在进行任何大规模工业发酵前,必须在实验室规模的小发酵罐进行大量的实验,得到产物形成的动力学模型,并根据这个模型设计中试的发酵要求,最后从中试数据再设计更大规模生产的动力学模型。由于生物反应的复杂性,在从实验室到中试,从中试到大规模生产过程中会出现许多问题,这就是发酵工程工艺放大问题。下游工程指从发酵液中分离和纯化产品的技术:包括固液分离技术(离心分离,过滤分离,沉淀分离等工艺),细胞破壁技术(超声、高压剪切、渗透压、表面活性剂和溶壁酶等),蛋白质纯化技术(沉淀法、色谱分离法和超滤法等),最后还有产品的包装处理技术(真空干燥和冰冻干事燥等)。此外,在生产药物和食品的发酵工业中,需要严格遵守美国联邦食品和药物管理局所公布的cGMPs的规定,并要定时接受有关_的检查监督。

发酵工程的发展简史

20世纪20年代的酒精、甘油和丙酮等发酵工程,属于厌氧发酵。从那时起,发酵工程又经历了几次重大的转折,在不断地发展和完善。

20世纪40年代初,随着青霉素的发现,抗生素发酵工业逐渐兴起。由于青霉素产生菌是需氧型的,微生物学家就在厌氧发酵技术的基础上,成功地引进了通气搅拌和一整套无菌技术,建立了深层通气发酵技术。它大大促进了发酵工业的发展,使有机酸、微生素、激素等都可以用发酵法大规模生产。

1957年,日本用微生物生产谷氨酸成功,如今20种氨基酸都可以用发酵法生产。氨基酸发酵工业的发展,是建立在代谢控制发酵新技术的基础上的。科学家在深入研究微生物代谢途径的基础上,通过对微生物进行人工诱变,先得到适合于生产某种产品的突变类型,再在人工控制的条件下培养,就大量产生人们所需要的物质。目前,代谢控制发酵技术已经与核苷酸、有机酸和部分抗生素等的生产中。

20世纪70年代以后,基因工程、细胞工程等生物工程技术的开发,使发酵工程进入了定向育种的新阶段,新产品层出不穷。

20世纪80年代以来,随着学科之间的不断交叉和渗透,微生物学家开始用数学、动力学、化工工程原理、计算机技术对发酵过程进行综合研究,使得对发酵过程的控制更为合理。在一些国家,已经能够自动记录和自动控制发酵过程的全部参数,明显提高了生产效率。


高三生物选修一知识点相关文章:

人教版高三生物选修一必背知识点

高中生物选修一知识点小总结

高考生物选修一知识大全

高中生物选修一笔记整理

人教版高中生物选修一知识点总结

高考生物选修的知识点

高中生物选修一期末知识点总结

高中生物选修三知识点第一章

高三生物选修二知识点整理分类

高中生物选修一植物组织培养知识点总结

    1068842