学习啦>学习方法>高中学习方法>高三学习方法>高三数学>

2018高考数学复习的八个诀窍

文娟分享

  学习数学需要讲究方法和技巧,掌握好答题技巧有助于考生在高考中节约时间并且取得更高的分数。下面是学习啦小编为大家整理的高考数学复习方法,请认真复习!

  高考数学复习的八个诀窍

  教你一个门道,简称“三问法”:第一问自己:“学懂了没有?”—主要解决“是什么”的问题,即学了什么知识;第二问自己:“领悟了没有?”—主要解决“为什么”的问题,即用了什么方法;第三问自己:“会用了没有?”—主要解决“做什么”的问题,即解决了什么问题。接下来再具体说说走进“门道”的八个诀窍吧。

  1.认真研读《说明》《考纲》

  《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。

  命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

  《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖,活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。

  2.多维审视知识结构

  高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

  3.把答案盖住看例题

  参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

  4.研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到很多题。你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

  一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。—道题的价值不在于做对、做会,而在于你明白了这题想考你什么。

  5.答题少费时多办事

  解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。

  6.错一次反思一次

  每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。因此平时注意把错题记下来,做错题笔记包括三个方面:(1)记下错误是什么,最好用红笔划出。(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。

  7.分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。(1)遗憾之错。就是分明会做,反而做错了的题;(2)似非之错。记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整等等。(3)无为之错。由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。原因找到后就消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。

  8.优秀是一种习惯

  柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。

  另外将平常的考试看成是积累考试经验的重要途径,把平时考试当作高考,从各方面不断的调试,逐步适应。注意书写规范,重要步骤不能丢,丢步骤等于丢分。根据解答题评卷实行“分段评分”的特点,你不妨做个心理换位,根据自己的实际情况,从平时做作业“全做全对”的要求中,转移到“立足于完成部分题目或题目的部分”上来,不要在一道题上花费太多时间,有时放弃可能是最佳选择。

  关于高考数学复习的几个技巧

  1.关于“听话”

  高三学生首先要做到“听话”,这里的“听话”是全方位的。如果你认为高三学习是第一位的,而忽视了对自己的日常行为的要求,那你就错了,学校和老师在高三一年中不会因为学习任务的加重,而放松对纪律的要求,反而会强化纪律以保证学习的正常进行。学习上更要听话,教高三的老师都是经历了几次或十几次高考授课,非常有经验,复习的进度、复习的内容、复习的顺序,都是长期教学实践中总结出来的。高考的变化及新要求,都会在复习中渗透进去。而不听老师的教诲,认为自有一套很好的复习方法的学生(每年都有)最后会碰的“头破血流”的。

  2.关于“上课”

  高考是个人行为,也是集体行为,复习中最重要的环节就是“听讲”,这就要求学生上课时紧跟老师,仔细听讲,积极思考,倾听别人的想法,提出自己的见解,在讨论中完成对知识、方法、能力的提高。如果高三任课教师发生变化,大家应该尽快适应。而不应该因为不适应这个老师的教学方法,就不喜欢这个老师,进而就不喜欢这门课程,这样受损失的只有学生自己。

  3.关于“复习”

  复习每天都要进行,即使今天没有数学课,也要对知识加以复习,这就要求有一个计划,首先对时间加以计划,每天都要有数学的复习时间,四十分钟(一节课)左右,周末应有两节课的时间;其次对学科加以计划,哪个时间段看哪个学科,要做到心中有数,计划有了贵在坚持。

  4.关于“作业”

  作业应该是检验听讲和复习效果的手段,不应看成一个负担,作业要认真对待,把每一次作业看成一次考试,不能敷衍了事,不会做的题目可以与同学研讨,但不要直接抄写,每次作业都是一次练习的机会,不要错过。

  高考数学复习的方法

  一、建构良好知识结构和认知结构体系良好的知识结构是高效应用知识的保证。

  以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,融汇代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。如面对代数中的“四个二次”:二次三项式,一元二次方程,一元二次不等式,二次函数时,以二次方程为基础、二次函数为主线,通过联系解析几何、三角函数、带参数的不等式等典型重要问题,建构知识,发展能力。

  高考数学试题十分重视对学生能力的考查,而这种能力是以整体的、完善的知识结构为前提的。国家教育部考试中心试题评价组《全国普通高考数学试题评价报告》明确指出:“试题注意数学各部分内容的联系,具有一定的综合性。加强数学各分支知识间内在联系的考查……要求考生把数学各部分作为一个整体来学习、掌握,而不机械地分为几块。这个特点不但在解答题中突出,而且在选择题中也有所体现。”

  传统的数学总复习是将各章划分为若干课时,一个课时一个中心议题。这种做法有它的可取之处,但其不足也是很明显的:

  第一,它将完整的知识结构切碎了、拆散了,不利于形成完整的知识体系;

  第二,它受制于各个课时的长度,而各个议题的容量并不都是相等的,那么在复习中势必将短的拉长,将长的截短,难以做到重点突出;

  第三,它每课时都要追求“高潮”,可是这些高潮与高考的要求又不尽吻合,因而造成教学的浪费;

  第四,每个课时都要配置选择题、填空题和解答题,而事实上有的议题并不需要设置解答题;

  第五,它受每个课时的制约,综合运用各部分知识的空间较狭窄。

  以章为一个单元,先在学生复习课本知识的基础上,由师生共同串讲梳理,从而建构既以本章为主线又广涉有关各章的知识网络系统,其次让学生进行客观性题目的练习,再讲练主观性题目。这样的做法可以在更广阔的知识空间里自由驰骋,有利于培养学生整体驾驭知识的能力,它不受每个课时的约束,从全章考虑进行统筹安排,更便于重点、热点的强化,难点的突破,而且做到经济实惠,可取得最大的复习效益。

  二、全面复习、突出重点、抓住典型、全面提高

  1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。

  中学数学的重点知识包括:(1)函数的基础理论应用。(2)三角函数和三角变换。(3)不等式的求解、证明和综合应用。(4)数列的基础知识和应用。(5)直线与平面的位置关系。(6)曲线方程的求解。(7)直线、圆锥曲线的性质和位置关系。(8)新增内容有:向量的基础知识和应用、概率与统计的基础知识和应用、初等函数的导数和应用

  2、对基础知识的复习应突出抓好两点:(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。

  3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。例如以函数为主线的知识链。又如直线与平面的位置关系中“平行”与“垂直”的知识链。

  4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。

  《考试大纲》指出:数学思想和数学方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识的发生,发展和应用的过程中,因此对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查反映考生对数学思想和方法理解和掌握的程度。

  数学思想数学在高考中涉及的数学思想有以下四种:

  (A)分类讨论思想:分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。分类讨论的实质是“化整为零、积零为整”。科学分类的基本原则是正确,不重不漏,合理,便于讨论,科学分类的步骤是:明确对象的全体——确定分类标准——科学分类——逐一讨论——归纳小结得出结论。

  (B)函数与方程的思想:函数与方程是贯穿中学数学的主线,函数是客观实践中量与量之间相互依存,相互制约的关系的反映,方程则是这种关系在某种特定条件下的具体形式。

  (C)变换与转化思想:在研究和解决一些数学问题时常采用某种手段进行命题变换,以达解决问题的目的。常见有以下三个方面①把复杂问题通过变换转化为较简单的问题。②把较难问题通过变换转化为较易的问题。③把没解决问题通过变换转化为已解决的问题。常见转化方法有:直接转化法、换元转化法、数形结合转化法、构造模型转化法、参数转化法、类比转化法。

  (D)数形结合思想:数形结合思想是应用客观事物中数与形的对应关系,把抽象的数学语言与直观的图形结合起来:①寻求解题的切入点 ②简化解题过程 ③转换命题 ④验证结论的正确与完整。数形结合的思想就是利用图形进行思维简缩,对选择、填空题的求解住住能大大简化思维过程,争取解题时间。

  数形结合住住借助:①函数与图像的对应关系② 方程与曲线的对应关系③ 以几何元素,几何条件建立的概念。④ 数与式的结构具有明显的几何意义。

  5、有计划地加强有效训练,不断提高四种数学能力。

  考试大纲指出“对能力的考察”以思维能力为核心,全面考察各种能力,强调探究性、综合性、应用性、切合考生实际,对数学能力的考察要以数学基础知识,数学思想方法为基础,加强思维品质的考察,对数学应用问题,要把握好提出问题所涉及的数学知识方法的深度和广度,切合中学数学教学实际。

  (1)思维能力思维能力是数学能力的核心,数学思维能力包括如下要求:(A)数学概括能力(B)数学抽象能力(C)数学推理能力(D)数学归纳能力(E)数学简缩能力(F)数学语言的表述能力。数学思维主要是逻辑思维,逻辑思维操作的对象是概念,即从概念出发,严格遵循逻辑推理的规则(主要是“三段论”的推理模式)进行推理,达到判断和证明的目的。

  (2)运算能力提高运算能力注意以下几点:(A)合理运用概念、公式、法则、定理、定律、提高运算的准确性。(B)精心设计运算过程,提高运算的合理性和简捷程度。(C)灵活运用数学思想方法,化繁为简。

  (3)空间想象能力。高考对这种数学能力要求有(A)根据题设条件想象和画出图形。识别图形——能利用图形的题设条件“看”出几何体的形状、大小相互位置关系,几何体的几个元素在平面上,空间中的相互位置关系,排列顺序。画出图像——能将题目给出的文字语言、符号、语言转换为图形语言,按照画法规则绘制相应的空间图形。(B)对几何图形的处理——图形的分割、组合、变形能对图形进行分割、补全、折叠、展开。能对图形进行平移变形处理,添加辅助线、面、体,将空间图形的某部分移出体外,空间图形的平面化处理将复杂图形简单化,非标准图形标准化。通过建立空间坐标系,利用向量知识解决有关立体几何问题是综合考察数学能力的重要途径。

  (4)解决实际问题的能力解决实际问题的能力是人们认识世界,改造世界的能力。较之前三种能力,它是更高层次和内涵更为宽泛的能力。高考对解决实际问题能力的考察要求是:(A)设计情景新,设问方式新的试题,增大思考量,减少运算量。(B)加强对数学语言的考察,要求学生通过阅读和思维,把文字语言,表格语言、图形语言转化为数学语言,考察考生接受信息处理信息的能力。(C)近年来对实际能力的考察,主要是通过开放性试题和实际应用问题来进行的。

  开放性试题包括:判断性问题、归纳性问题、操作性问题。

  应用性问题包括:直接套用现成方式求解、利用现成数学模型求解、根据数学条件建立数学模型求解。

  解决实际问题的一般程序:审题——读懂题面,理解题意,分清条件和结论,利用图表理顺数量关系。建模——将题中的文字语言,转化为数学语言,建立相应的数学模型。解模——求解模型,得出数学结论。还原——将数学结论还原为实际问题的意义,通过检验得出应用问题的结论。

  6.发挥选择题,填空题的思维训练和能力训练功能选择、填空题都是客观试题,它的特点是:概念性强、量化突出、充满思辨性、形数皆备、解法多样形、题量大,分值高,实现对“三基”的考查。


猜你喜欢:
1.备战高考数学复习方法全攻略

2.10位高考黑马复习秘籍:后进生必看

3.高考理科数学复习方法

4.如何提高高考数学一轮复习效率

5.高考数学复习方法有哪些

6.如何复习高考数学

    1241483