学习啦>学习方法>高中学习方法>高二学习方法>高二数学>

高中必修五数学公式总结

文娟分享

  公式对于数学学习是很重要的,在学数学的时候要记住必要的公式,高中必修五数学公式有哪些呢?下面是学习啦小编为大家整理的高中必修五数学公式,希望对大家有所帮助!

  高中必修五数学公式总结

高中必修五数学公式总结
高中必修五数学公式总结
高中必修五数学公式总结
 

  2018广东省物理试卷答案高中数学必修五知识点

  ●解三角形

  1. ?

  2.解三角形中的基本策略:角 边或边 角。如 ,则三角形的形状?

  3.三角形面积公式 ,如三角形的三边是 ,面积是?

  4.求角的几种问题: ,求

  △面积是 ,求 . ,求cosc

  5.一些术语名词:仰角(俯角),方位角,视角分别是什么?

  6.三角形的三个内角a,b,c成等差数列,则 三角形的三边a,b,c成等差数列,则

  三角形的三边a,b,c成等比数列,则 ,你会证明这三个结论么?

  数列

  ★★1.一个重要的关系 注意验证 与 等不等?如已知

  2. 为等差

  为等比

  注:等比数列有一个非常重要的关系:所有的奇(偶)数项 .如{an}是等比数列,且

  ★★3.等差数列常用的性质:

  ①下标和相等的两项和相等,如 是方程 的两根,则

  ②在等差数列中, ……成等差数列,如在等差数列中,

  ③若一个项数为奇数的等差数列,则 , ------

  4.数列的最大项问题一定是要研究该数列是怎么变化的?(数列的单调性)——研究 的大小。

  数列的最大(小)和问题,

  如:等差数列中, ,则 最大时的n= .等差数列中, ,则 最大时的n=

  5.数列求和的方法:

  ①公式法:等差数列的前5项和为15,后5项和为25,且 ★②分组求和法:

  ★③裂项求和法——两种情况的数列用:

  ★★④错位相减法——等差比数列(如 )——如何错位?相减要注意什么?最后不要忘记什么?

  6.求通项的方法

  ①运用关系式 ★②累加(如 )

  ★③累乘(如

  ★★④构造新数列——如 ,a1=1,求an=?

  (一定要会) ,求

  ●不等式

  1.不等式 你会解么? 你会解么?如果是写解集不要忘记写成集合形式!

  2. 的解集是(1,3),那么 的解集是什么?

  3.两类恒成立问题 图象法—— 恒成立,则 =?

  ★★★★分离变量法—— 在[1,3]恒成立,则 =?(必考题)

  4.线性规划问题

  (1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界

  (2)目标函数改写: (注意分析截距与z的关系)

  (3)平行直线系去画

  5.基本不等式的形式 和变形形式

  如a,b为正数,a,b满足 ,则ab的范围是

  6.运用基本不等式求最值要注意:一正二定三相等!

  如 的最小值是 的最小值 (不要忘记交代是什么时候取到=!!)

  一个非常重要的函数——对勾函数 的图象是什么?

  运用对勾函数来处理下面问题 的最小值是

  7.★★两种题型:

  和——倒数和(1的代换),如x,y为正数,且 ,求 的最小值?

  和——积(直接用基本不等式),如x,y为正数, ,则 的范围是?

  不要忘记x ,xy,x2+y2这三者的关系!如x,y为正数, ,则 的范围是?

  ★★★★一类必考的题型——恒成立问题(处理方法是分离变量)

  如 对任意的x∈[1,2]恒成立,求a的范围? 在[1,3]恒成立,则 =?

  (1)已知a,b为正常数,x、y为正实数,且 ,求x+y的最小值。

  (2) 已知 ,且 ,求 的最大值

  例2.已知 ,(1)求 的最大和最小值。(2)求 的取值范围。

  (3) 求 的最大和最小值。

  解析:注意目标函数是代表的几何意义.

  解:作出可行域。

  (1) ,作一组平行线l: ,解方程组 得最优解b(3,1), 。解 得最优解c(7,9),

  (2) 表示可行域内的点(x,y)与(0,0)的连线的斜率。从图中可得, ,又 , 。

  (3) 表示可行域内的点(x,y)到(0,0)的距离的平方。从图中易得, ,(of为o到直线ab的距离), 。 , , , 。

  点拨:关键要明确每一目标函数的几何意义,从而将目标函数的最值问题转化为某几何量的取值范围.


猜你喜欢:

1.高中必修五数学公式总结

2.数学必修五数列公式总结

3.高中必修数学公式总结 高中必修数学公式大全

4.高中物理公式总结(完整)

5.高中数学必修5全部公式

6.高中数学必修5数列知识点总结

    1440191