高二理科数学下册期末复习测试题及答案
考试是检测学习成效的重要手段,孰能生巧,考前一定要多做做练。以下是学习啦小编为大家收集整理的高二理科数学下册期末复习测试题,请考生认真复习。
高二理科数学下册期末复习测试题:
第Ⅰ卷(选择题 共60分)
一、选择题(每小题5分,共50分。)
1、 已知复数 满足 ,则 等于( )
A. B. C. D.
2、
一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个是女孩的概率是( )
A. B. C. D.
3、黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2011个图案中,白色地面砖的块数是 ( )
A.8046 B.8042 C.4024 D.6033
4、右图是计算1+3+5+…+99的值的算法程序框图, 那 么在空白的判断框中, 应该填入下面四个选项中的( )
A. i≤50 B. i≤97 C. i≤99 D. i≤101
5、一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分100分。某学生选对每道题的概率为0.8,则考生在这次考试中成绩的期望与方差分别是 ( )
A、80;8 B、80;64 C、70;4 D、70;3
6、在 上有一点 ,它到 的距离与它到焦点的距离之和最小,则点 的坐标是
A.(-2,1) B. (1,2) C.(2,1) D. (-1,2)
7、从某校高三年级中随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,
其结果的频率分布直方图如图所示,若某高校 A专业对视力的
要求在0.9以上,则该班学生中能报A专业的人数为( )
A.10 B.20 C.8 D.16
8、设函数 ,曲线 在点 处的切线方程为 ,则曲线 在点 处切线的斜率为( )
A. B. C. D.
9、如图所示,定点A和B都在平面α内,定点P α,PB⊥α,C是α内异于A和B的动点,且PC⊥AC,那么,动点C在平面α内的轨迹是()
A.一条线段,但要去掉两个点 B.一个圆,但要去掉两个点
C.一个椭圆,但要去掉两个点 D.半圆,但要去掉两个点
10、矩形ABCD中,AB=3,BC=4,沿对角线BD将△ABD折起,使A点在平面BCD内的射影落在BC边上,若二面角C—AB—D的平面角大小为 ,则sin 的值等( )
A. B. C. D.
二、填空题(每题5分,共25分,注意将答案写在答题纸上)
11、若随机变量X服从两点分布,且成功概率为0.7;随机变量Y服从二项分布,且Y~B(10,0.8),
则E(X), E(Y)分别是 , .
12、 甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为 ,再由乙猜甲刚才所想的数字,把乙猜的数字记为 ,且 。若 ,则称甲乙“心有灵犀”。现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 。
13、在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图 所标边长,由勾股定理有: 设想正方形换成正方体,把截线换成如图 所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥 ,如果用 表示三个侧面面积, 表示截面面积,那么你类比得到的结论是 _ ;
14、定义在 上的可导函数 满足: 且 ,则 的解集为 。
15.有下列四个命题,其中真命题为________ (填序号)
①“若 ,则 ”的逆命题;②“全等三角形的面积相等”的否命题;
③“若 ,则 有实根”的逆否命题;④“若 ,则 ”的逆命题.
三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤)。
16、(12分)某部队进行射击训练,每个学员最多只能射击4次,学员如有2次命中目标,那么就不再继续射击。假设某学员每次命中目标的概率都是 ,每次射击互相独立.
(1)求该学员在前两次射击中至少有一次命中目标的概率;
(2)记该学员射击的次数为 ,求 的分布列及数学期望。
17、(12分) 若不等式 对一切正整数n都成立,求正整数a的最大值,并用数学归纳法证明你的结论。
18、 (12分) 如图,在直三棱柱ABC—A1B1C1中,AC=1,AB= ,BC= ,AA1= 。
(I)求证:A1B⊥B1C;
(II)求二面角A1—B1C—B的大小。
19、 (12分) 如图,已知二次函数 ,直线 ,直线 (其中 , 为常数);.若 的图象所围成的封闭图形如阴影所示.
(Ⅰ)求 ; (Ⅱ)求阴影面积s关于t的函数 的解析式;
20、 (13分) 已知函数
(1)求函数 的极大值;(2)当 时,求函数 的值域;
(3)已知 ,当 时, 恒成立,求 的取值范围。
21、(14分) 设 、 分别是椭圆 的左、右焦点.
(1)若 是该椭圆上的一个动点,求 的取值范围;
(2)设过定点Q(0,2)的直线 与椭圆交于不同的两点M、N,且∠ 为锐角(其中 为坐标原点),求直线 的斜率 的取值范围.
(3)设 是它的两个顶点,直线 与AB相交于点D,与椭圆相交于E、F两点.求四边形 面积的最大值.
高二理科数学下册期末复习测试题参考答案:
一、BBADB BBABA
二、11.0.7 8 12. 13. 14. 15. .①③
三、16、(1)
(2) ,
17、解 当n=1时, ,
即 , ∴a<26,又a∈ ,∴取a=25,下面用数学归纳法证明:[
。…………2分
(1)当n=1时,已证。…………4分
(2)假设当n=k时, 成立。……6分
则当n=k+1时,有
,……………8分
∵ ,
∴ 也成立。……………10分
由(1)、(2)可知,对一切n∈N*,都有不等式 成立。
∴a的最大值为25。………………12分
18、解法一:(I)由AC=1,AB= ,BC= 知AC2+AB2=BC2,所以AC⊥AB。因为ABC—A1B1C1是直三棱柱,面ABB1A1⊥面ABC,所以AC⊥面ABB1A1。……3分
由三垂线定理得A1B⊥B1C。 …………6分
(II)作BD⊥B1C,垂足为D,连结A1D。由(I)知,A1B⊥B1C,则B1C⊥面A1BD,
于是B1C⊥A1D, 则∠A1DB为二面角A1—B1C—B的平面角。……8分
∴Rt△A1B1C≌Rt△B1BC,
故二面角A1—B1C—B的大小为
解法二:由AC=1,AB= ,BC= 知AC2+AB2=BC2,
所以AC⊥AB。如图建立空间直角坐标系
…2分(I) ……6分
(II)作 ,垂足为D,连结A1D。
设 , 所以 等于二面角A1—B1C—B的大小。
,
故二面角A1—B1C—B的大小为 ………………12分
19、解:(I)由图可知二次函数的图象过点(0,0),(1,0)
则 ,又因为图象过点(2,6)∴6=2a ∴a=3
∴函数 的解析式为
(Ⅱ)由 得
∵ ,∴直线 与 的图象的交点
横坐标分别为0,1+t ,
由定积分的几何意义知:
,
20、解:(1) ,……… 2分令 得 ,
x -2 0 1
- 0 + 0 - 0
+
递减 极小值 递增 极大值 递减
极小值 递增
所以当 时 的极大值为 ;……………………………………………………4分
(2)当 时,由(Ⅰ)知当 和 , 分别取极小值 ,所以函数 的最小值为 ,又当 时 ,故函数 的值域为 ,8分
(3) 即 ,
记 , 在 递增,只需 ,即 ,即 ,解得 ,所以满足条件的 的
取值范围是 …………………12分
21、解法一:易知 所以 ,设 ,则
故 .…………2分
(2)显然直线 不满足题设条件,可设直线 ,
联立 ,消去 ,整理得: ………………………3分
∴
由 得: ………………………5分
又0°<∠MON<90° cos∠MON>0 >0 ∴
又
∵ ,即 ∴
故由①、②得 或 …………………………… ………………7分
(3)解法一:根据点到直线的距离公式和①式知,点 到 的距离分别为 ,
.……………………………………………9分
又 ,所以四边形 的面积为 = ,
…………………………………………………11分
当 ,即当 时,上式取等号.所以 的最大值为 .………12分
解法二:由题设, , .
设 , ,由①得 , ,……………………9分
故四边形 的面积为
,…11分
当 时,上式取等号.所以 的最大值为 .…………………12分
看过"高二理科数学下册期末复习测试题及答案 "的还看了: