七年级数学下期末考试卷人教版(2)
故选:C.
8.已知关于x的不等式组 无解,则a的取值范围是( )
A.a≤2 B.a≥2 C.a<2 D.a>2
【考点】解一元一次不等式组.
【分析】根据不等式组无解的条件即可求出a的取值范围.
【解答】解:由于不等式组 无解,
根据“大大小小则无解”原则,
a≥2.
故选B.
二、填空题(共7小题,每小题3分,满分21分)
9.若 是方程x﹣ay=1的解,则a= 1 .
【考点】二元一次方程的解.
【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数k的一元一次方程,从而可以求出a的值.
【解答】解:把 代入方程x﹣ay=1,
得3﹣2a=1,
解得a=1.
故答案为1.
10.不等式3x﹣9<0的最大整数解是 2 .
【考点】一元一次不等式的整数解.
【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.
【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.
故答案为2.
11.列不等式表示:“2x与1的和不大于零”: 2x+1≤0 .
【考点】由实际问题抽象出一元一次不等式.
【分析】理解:不大于的意思是小于或等于.
【解答】解:根据题意,得2x+1≤0.
12.将方程2x+y=6写成用含x的代数式表示y,则y= 6﹣2x .
【考点】解二元一次方程.
【分析】要用含x的代数式表示y,就要把方程中含有y的项移到方程的左边,其它的项移到方程的另一边.
【解答】解:移项,得y=6﹣2x.
故填:6﹣2x.
13.等腰三角形的两边长分别为9cm和4cm,则它的周长为 22cm .
【考点】等腰三角形的性质;三角形三边关系.
【分析】先根据已知条件和三角形三边关系定理可知,等腰三角形的腰长不可能为4cm,只能为9cm,再根据周长公式即可求得等腰三角形的周长.
【解答】解:∵等腰三角形的两条边长分别为9cm,4cm,
∴由三角形三边关系可知:等腰三角形的腰长不可能为4cm,只能为9cm,
∴等腰三角形的周长=9+9+4=22.
故答案为:22cm.
14.一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是 ﹣5
【考点】三角形三边关系;解一元一次不等式组.
【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.
【解答】解:8﹣3<1﹣2m<3+8,
即5<1﹣2m<11,
解得:﹣5
故答案为:﹣5
15.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 19 cm.
【考点】线段垂直平分线的性质.
【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.
【解答】解:∵△ABC中,DE是AC的中垂线,
∴AD=CD,AE=CE= AC=3cm,
∴△ABD得周长=AB+AD+BD=AB+BC=13 ①
则△ABC的周长为AB+BC+AC=AB+BC+6 ②
把②代入①得△ABC的周长=13+6=19cm
故答案为:19.
三、解答题(共9小题,满分75分)
16.(1)解方程: ﹣ =1;
(2)解方程组: .
【考点】解二元一次方程组;解一元一次方程.
【分析】(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.
(2)应用加减消元法,求出二元一次方程组的解是多少即可.
【解答】解:(1)去分母,可得:2(x﹣1)﹣(x+2)=6,
去括号,可得:2x﹣2﹣x﹣2=6,
移项,合并同类项,可得:x=10,
∴原方程的解是:x=10.
(2)
(1)+(2)×3,可得7x=14,
解得x=2,
把x=2代入(1),可得y=﹣1,
∴方程组的解为: .
17.解不等式组,并在数轴上表示它的解集.
.
【考点】解一元一次不等式组;在数轴上表示不等式的解集.
【分析】分别求出每一个不等式的解集,根据口诀“同小取小”确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
【解答】解:解不等式 >x﹣1,得:x<4,
解不等式4(x﹣1)<3x﹣4,得:x<0,
∴不等式组的解集为x<0,
将不等式解集表示在数轴上如下:
18.x为何值时,代数式﹣ 的值比代数式 ﹣3的值大3.
【考点】解一元一次方程.
【分析】根据题意列出一元一次方程,解方程即可解答.
【解答】解:由题意得:
﹣9(x+1)=2(x+1)
﹣9x﹣9=2x+2
﹣11x=11
x=﹣1.
19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.
【考点】三角形的外角性质;三角形内角和定理.
【分析】要求∠B的度数,可先求出∠C=70°,再根据三角形内角和定理求出∠BAC+∠B=110°最后由三角形的外角与内角的关系可求∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,即∠B=50°.
【解答】解:∵AE⊥BC,∠EAC=20°,
∴∠C=70°,
∴∠BAC+∠B=110°.
∵∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,
∴∠B=50°.
20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.
(1)填空:∠AFC= 110 度;
(2)求∠EDF的度数.
【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).
【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;
(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.
【解答】解:(1)∵△ABD沿AD折叠得到△AED,
∴∠BAD=∠DAF,
∵∠B=50°∠BAD=30°,
∴∠AFC=∠B+∠BAD+∠DAF=110°;
故答案为110.
(2)∵∠B=50°,∠BAD=30°,
∴∠ADB=180°﹣50°﹣30°=100°,
∵△ABD沿AD折叠得到△AED,
∴∠ADE=∠ADB=100°,
∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.
21.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,求这个多边形的每一个外角的度数及这个多边形的边数.
【考点】多边形内角与外角.
【分析】一个内角是一个外角的3倍,内角与相邻的外角互补,因而外角是45度,内角是135度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.
【解答】解:每一个外角的度数是180÷4=45度,
360÷45=8,
则多边形是八边形.
22.(1)分析图①,②,④中阴影部分的分布规律,按此规律,在图③中画出其中的阴影部分;
(2)在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形.
【考点】规律型:图形的变化类;轴对称图形;旋转的性质.
【分析】(1)从图中可以观察变化规律是,正方形每次绕其中心顺时针旋转90°,每个阴影部分也随之旋转90°.
(2)如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.
【解答】解:(1)如图:
(2)
23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)
(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;
(2)在DE上画出点P,使PB1+PC最小.
【考点】作图-轴对称变换;轴对称-最短路线问题.
【分析】(1)根据网格结构找出点A、B、C关于直线DE的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据轴对称确定最短路线问题,连接BC1,与直线DE的交点即为所求的点P.
【解答】解:(1)△A1B1C1如图所示;
(2)点P如图所示.
24.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
【考点】一元一次不等式组的应用;二元一次方程组的应用.
【分析】(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;
(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.
【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,
则: ,
解之得 .
答:A种型号的衣服每件90元,B种型号的衣服100元;
(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,
可得: ,
解之得 ,
∵m为正整数,
∴m=10、11、12,2m+4=24、26、28.
答:有三种进货方案:
(1)B型号衣服购买10件,A型号衣服购进24件;
(2)B型号衣服购买11件,A型号衣服购进26件;
(3)B型号衣服购买12件,A型号衣服购进28件.
看了“七年级数学下期末考试卷人教版”的人还看了: