学习啦>学习方法>初中学习方法>初二学习方法>八年级数学>

人教版八年级上册数学期末试卷附答案题目分析

妙纯分享

  关键的八年级数学期末考试就临近了,放下包袱开动脑筋,勤于思考好好复习,祝你取得好成绩,期待你的成功!下面小编给大家分享一些人教版八年级上册数学期末试卷,大家快来跟小编一起看看吧。

  人教版八年级上册数学期末试题

  一、精心选一选,慧眼识金!每小题3分,共24分,在四个选项中只有一项符合题目要求.

  1.要使分式 有意义,则x的取值范围是(  )

  A.x≠1 B.x>1 C.x<1 D.x≠﹣1

  2.下列运算正确的是(  )

  A.a3+a4=a7 B.2a3•a4=2a7 C.(2a4)3=8a7 D.a8÷a2=a4

  3.下面有4个汽车标致图案,其中不是轴对称图形的是(  )

  A. B. C. D.

  4.在如图中,正确画出AC边上高的是(  )

  A. B. C. D.

  5.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为(  )

  A.14 B.16 C.10 D.14或16

  6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(  )

  A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°

  7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(  )

  A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2

  8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(  )

  A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)

  二、耐心填一填,一锤定音!每小题2分,共16分.

  9.﹣ ﹣ =      .

  10.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是      .

  11.一个多边形的每个内都等于135°,则这个多边形是      边形.

  12.生物学家发现了一种新型病毒,这种病毒的长度约为0.000043毫米,用科学记数法表示为      米.

  13.若等腰三角形中有一个内角等于50°,则这个等腰三角形的顶角的度数为      度.

  14.若a+b=6,ab=4,则a2+b2=      .

  15.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=      .

  16.如图,在△ABC中,按以下步骤作图:

  ①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于M,N两点;

  ②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为      .

  三、认真算一算,又快又准!每小题6分,共24分.

  17.分解因式:2a3﹣8a2b+8ab2.

  18.4(x+1)2﹣(2x+5)(2x﹣5)

  19.解方程: .

  20.先化简( ﹣ )÷ ,然后给x选择一个你喜欢的数代入求值.

  四、细心想一想,用心做一做!每小题8分,共24分.

  21.已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.

  22.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求DC的长.

  23.为了全面提升西宁市中小学学生的综合素质,某学习图书馆用240元购进A种图书若干本,同时用200元购进B种图书若干本.A种图书单件是B种图书单件的1.5倍,B种图书比A种图书多购进4本,求B种图书的单件.

  五、你一定是生活中的智者!

  24.如图,△ABC为等边三角形,AE=BD,AD,CE相交于点F,CP⊥AD于P,PF=3,EF=1.

  (1)求证:AD=CE;

  (2)求∠CFD的度数;

  (3)求AD的长.

  人教版八年级上册数学期末试卷参考答案

  一、精心选一选,慧眼识金!每小题3分,共24分,在四个选项中只有一项符合题目要求.

  1.要使分式 有意义,则x的取值范围是(  )

  A.x≠1 B.x>1 C.x<1 D.x≠﹣1

  【考点】分式有意义的条件.

  【专题】常规题型.

  【分析】根据分母不等于0列式计算即可得解.

  【解答】解:由题意得,x﹣1≠0,

  解得x≠1.

  故选:A.

  【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:

  (1)分式无意义⇔分母为零;

  (2)分式有意义⇔分母不为零;

  (3)分式值为零⇔分子为零且分母不为零.

  2.下列运算正确的是(  )

  A.a3+a4=a7 B.2a3•a4=2a7 C.(2a4)3=8a7 D.a8÷a2=a4

  【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.

  【分析】根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.

  【解答】解:A、a3和a4不是同类项不能合并,故本选项错误;

  B、2a3•a4=2a7,故本选项正确;

  C、(2a4)3=8a12,故本选项错误;

  D、a8÷a2=a6,故本选项错误;

  故选:B.

  【点评】本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.

  3.下面有4个汽车标致图案,其中不是轴对称图形的是(  )

  A. B. C. D.

  【考点】轴对称图形.

  【专题】几何图形问题.

  【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.

  【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.

  第4个不是轴对称图形,是中心对称图形.

  故选D.

  【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.

  4.在如图中,正确画出AC边上高的是(  )

  A. B. C. D.

  【考点】三角形的角平分线、中线和高.

  【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.

  【解答】解:画出AC边上高就是过B作AC的垂线,

  故选:C.

  【点评】此题主要考查了三角形的高,关键是掌握高的作法.

  5.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为(  )

  A.14 B.16 C.10 D.14或16

  【考点】等腰三角形的性质;三角形三边关系.

  【专题】分类讨论.

  【分析】因为底边和腰不明确,分两种情况进行讨论.

  【解答】解:(1)当4是腰时,符合三角形的三边关系,

  所以周长=4+4+6=14;

  (2)当6是腰时,符合三角形的三边关系,

  所以周长=6+6+4=16.

  故选D.

  【点评】注意此题一定要分两种情况讨论.但要注意检查是否符合三角形的三边关系.

  6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(  )

  A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°

  【考点】全等三角形的判定.

  【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.

  【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;

  B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;

  C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;

  D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;

  故选:C.

  【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

  注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

  7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(  )

  A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2

  【考点】完全平方公式的几何背景.

  【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.

  【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,

  则面积是(a﹣b)2.

  故选:C.

  【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.

  8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(  )

  A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)

  【考点】三角形内角和定理;翻折变换(折叠问题).

  【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.

  【解答】解:2∠A=∠1+∠2,

  理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,

  则2∠A+180°﹣∠2+180°﹣∠1=360°,

  ∴可得2∠A=∠1+∠2.

  故选:B.

  【点评】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.

  二、耐心填一填,一锤定音!每小题2分,共16分.

  9.﹣ ﹣ = ﹣3  .

  【考点】二次根式的加减法.

  【专题】计算题.

  【分析】原式化简后,合并即可得到结果.

  【解答】解:原式=﹣2 ﹣ =﹣3 .

  故答案为:﹣3

  【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.

  10.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是 P1(﹣2,﹣3) .

  【考点】关于x轴、y轴对称的点的坐标.

  【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;则P1的坐标为(﹣2,﹣3).

  【解答】解:∵P(﹣2,3)与P1关于x轴对称,

  ∴横坐标相同,纵坐标互为相反数,

  ∴P1的坐标为(﹣2,﹣3).

  故答案为(﹣2,﹣3).

  【点评】考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律,注意结合图象,进行记忆和解题.

  11.一个多边形的每个内都等于135°,则这个多边形是 八 边形.

  【考点】多边形内角与外角.

  【分析】由多边形的每个外角与其相邻的内角互为邻补角得出每个外角都是45°,然后用45°×n=360°求得n值即可.

  【解答】解:由题意可得:(n﹣2)•180=135n,

  解得n=8.

  即这个多边形的边数为八.

  故答案为:八.

  【点评】本题考查了多边形的内角和定理,多边形的外角与内角的关系,验证了多边形的外角和定理,比较简单.

  12.生物学家发现了一种新型病毒,这种病毒的长度约为0.000043毫米,用科学记数法表示为 4.3×10﹣5 米.

  【考点】科学记数法—表示较小的数.

  【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

  【解答】解:0.000043=4.3×10﹣5,

  故答案为:4.3×10﹣5.

  【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

  13.若等腰三角形中有一个内角等于50°,则这个等腰三角形的顶角的度数为 50或80 度.

  【考点】等腰三角形的性质;三角形内角和定理.

  【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.

  【解答】解:(1)若等腰三角形一个底角为50°,顶角为180°﹣50°﹣50°=80°;(2)等腰三角形的顶角为50°.

  因此这个等腰三角形的顶角的度数为50°或80°.

  故答案为:50或80.

  【点评】本题考查等腰三角形的性质及三角形的内角和定理.在解答此类题目的关键是要注意分类讨论,不要漏解.

  14.若a+b=6,ab=4,则a2+b2= 28 .

  【考点】完全平方公式.

2594517