十种方法让你快速提高数学成绩
高考数学要想拿到一个好的分数不是件容易的事,那么有什么提高分数的方法和技巧吗?下面是小编分享的提高数学成绩的十种方法,一起来看看吧。
提高数学成绩的十种方法
一:直选法——简单直观
这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。
二:比较排除法——排除异己
这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。
三:特殊值法、极值法——投机取巧
对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。
四:极限思维法——无所不极
物理中体现的极限思维常见方法有极端思维法、微元法。当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。
微元法是把物理过程或研究对象分解为众多细小的
“微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。
五:代入法——事半功倍
对于一些计算型的选择题,可以将题目选项中给出的答案直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数学运算量。
六:对比归谬法——去伪存真
对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。
七:整体、隔离法——双管齐下
研究对象为多个时,首先要想到利用整体、隔离法去求解。常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。
八:对称分析法——左右开弓
对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题
九:图像图解法——立竿见影
根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找答案,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的答案。
十:逆向思维法——另辟蹊径
很多物理过程具有可逆性,如运动的可逆性,光路的可逆性等,在沿着正向“由因到果”去分析受阻时,可“反其道而行之”,沿着逆向“由果到因”的过程去思考,常常收到化难为易、出奇制胜的效果。
高考数学短时间快速提分方法
数学,不管对哪个层次的考生来说,最后40天里基础都是同样重要的。建议考生结合模考的情况,对得分点、失分点做个总结。找出集中错误,回归课本再重新看知识原理,适当加强相应的练习。总的来说,在紧跟老师步伐的同时,考生最好抽时间把所有知识理出纲要或者把总复习资料再理一遍;每周保持一定练习,做1~2套试卷,在考前最好达到看到题目就知道考哪部分内容的程度,做到知识脉络和框架了然于胸。
同时,考生也很有必要在认识自己水平的基础上,实行分层次复习。
程度较好,想冲高分的学生,再加强基础练习,提高命中率的前提下,可适当找一些难题、新颖题型练手。
程度中等的学生,最后50天里,抓基础就是抓高考。高考数学150分里,基础分占到120分左右,包括填空、选择、大题前三题,大题后三题难度比较大,但设问的第一问相对容易。中等及中等以下的学生主要的夺分点就在这几部分。对这些学生来说,心态上要懂得舍弃,分清哪些是自己可得的,哪些是不可得的。做题宁可稳一点、慢一点,哪怕舍弃最后两道难题、只要基础部分的题做好,数学上100分是没有问题的。
做题注意解题规范、避免不必要失分,做填空题、解答题时要注意计算准确、表述清楚、书写规范,避免出现“会而不对、对而不全”的情况。比如,解应用题时,设的未知量代表什么要有适当说明,不能单给个式子;做题步骤要详细写出,不要随意跳步。另外,书写过程中,等号、不等号、特殊点的书写也不可漏,避免不必要的失分。
对于最后两道难度较大的题,第一问做不出来没关系,不要放空,可在承认第一问、第二问成立的基础上,继续做下一问,说不定会有意外收获。
至于创新题型,不少考生长期以来都有“题目怕新、计算怕烦”的毛病,所以一看到新题就慌了手脚,其实高考仍然以考查基础知识为主干,建议考生平时要有遇到新题型的心理准备,一旦遇到不忘给自己打气,明确新题型都是来自课本基础,“换汤不换药”,解题仍要从基本知识、基本概念入手。
另外,在高考前,考生还需要学会加强应试训练,在平时考试中不要“算分”。这三次模考结束后,有考生直接把知识掌握程序等同于卷面分数,分数高了就忘乎所以,分数低了就一蹶不振。实际上试卷难度有差异,容易卷考140多分,难的卷子考130 分,分数看似降了,但水平不变;且统考卷成绩遇易升遇难降,这是普遍情况,考生应该放宽心,不要一遇到难的卷子就先胆怯。
高考时数学的抢分技巧
考前做好准备
1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,关系。大题角度是个很重要的结论,然后你可以乱吹些上去,最后写出结论。
2.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式。
3.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式。
解题法
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△abc的三个顶点在椭圆4x2+5y2=6上,其中a、b两点关于原点o对称,设直线ac的斜率k1,直线bc的斜率k2,则k1k2的值为
a.-5/4b.-4/5c.4/5d.2√5/5
解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定a、b、c三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令a、b分别为椭圆的长轴上的两个顶点,c为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选b。
极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
猜你感兴趣: