学习啦——考试网>学历类考试>高考频道>高考科目>高考数学>

勾股定理知识点

玉莲分享

  勾股定理,我们在高中的时候学习过,它在中国的九章算术上也有记载,相信大家不会陌生。下面是学习啦小编给大家整理的勾股定理,供大家参阅!

  勾股定理定义

  在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:

  勾股定理是余弦定理中的一个特例。

  勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

  勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

  勾股定理意义

  1.勾股定理的证明是论证几何的发端;

  2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

  3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

  4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

  5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

  勾股定理推广

  勾股数组

  勾股数组是满足勾股定理 的正整数组,其中的称为勾股数。例如就是一组勾股数组。

  任意一组勾股数可以表示为如下形式: ,,,其中 均为正整数,且。

  定理用途

  已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。

  勾股定理推导

  青朱出入图

  青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。

  刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。

  欧几里得证法

  在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

  在这个定理的证明中,我们需要如下四个辅助定理:

  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

  三角形面积是任一同底同高之平行四边形面积的一半。

  任意一个正方形的面积等于其二边长的乘积。

  任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

  证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

  设△ABC为一直角三角形,其直角为∠CAB。

  其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

  画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

  分别连接CF、AD,形成△BCF、△BDA。

  ∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

  ∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

  因为AB=FB,BD=BC,所以△ABD≌△FBC。

  因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

  因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

  因此四边形BDLK=BAGF=AB²。

  同理可证,四边形CKLE=ACIH=AC²。

  把这两个结果相加,AB²+AC²=BD×BK+KL×KC

  由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

  由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

  此证明是于欧几里得《几何原本》一书第1.47节所提出的。

  由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。

  

看过勾股定理的人还看了:

1.高一数学勾股定理知识点总结

2.数学勾股定理知识点

3.勾股定理的知识点

4.初二数学勾股定理知识点

5.勾股定理知识归纳 勾股定理的应用