高三应该怎么学数学公式
高中的数学公式很多,特别是高三,所以想要学好高中的数学公式还得找到方法。以下是小编分享给大家的高三学数学公式的方法,希望可以帮到你!
高三学数学公式的方法
一、用好课本:侧重以下几个方面
1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念。如以“角”的概念为例,课本中出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各自的定义出法,都有一个确定的取值范围。如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的唯一性。对此理解、掌握了才不会出现概念性错误。
2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围。如用平均值不等式求最值,必须满三个条件,缺一不可。有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件。
3.掌握典型命题所体现的思想与方法。如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法。
因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础。
二、上好课:课堂学习质量直接影响学习成绩
1.会听课。会听课就是要积极思考。当老师提出问题后,就要抢在老师前面思考怎么办?想一想解决这个问题的所有可能的途径和方法,然后在和教师讲的去比较,可能有的想法行有的不行,可能老师的方法更好,可能你的方法还简明、还奇妙。而不要等老师一点一点告诉你,自己仅仅是听懂了就认为学会了,这实际上是只得怀疑的。难怪不少同学说老师一讲就会,自己一做就错,原因是自己没有真正去思考,也就不可能变成自己的东西。所以积极思考是上好课最为重要的环节,当然也学习的主要方法。
2.做笔记。上课老师讲的含有重要概念,各种问题常规思想与方法,易错的问题,以及一些很适用的规律和技能等,所以,上课做好笔记是必要的。
3.要及时复习。根据记忆规律,复习应及时,每天一复习,一周一复习,每单一总结为好。
三、多做题:高三学习数学要做一定量习题
1.难度适当。现在复习资料多,题多,复习时应按老师的要求。且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失。因此,练习时应从自已的实际情况出发,循序渐进。应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质。
2.题贵在精。在可能的情况下多练习一些是好的,但贵在精。首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”。其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程。第三对重点问题要舍得划费时间,多做一些题。第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一。
3.重视改错。有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意。只有经过不断的改正错误,日积月累,才能提高。
4.注意总结。不仅包括题型、方法、规律的总结,还要掌握一些基本题。
四、搞好每一阶段的复习
进入高三后基本上就开始复习了,要服从老师的计划和安排,扎扎实实完成每一阶段的任务,不能急于求成。一般分为四个阶段:
1.第一阶段是系统复习。时间大约九个月。重点是全面复习,侧重基础,即按章节进行,以“三基”为核心,系统而全面地弄清每一个知识点,熟练掌握通性、通法,并注重知识体系的形成。
“三基”是指数学的基础知识、基本技能和基本方法。对“三基”的掌握需要一个过程,必须经过适量、适当的训练才能达到。因此,应养成一种好的学习习贯,把每一次练习都当成一次学习、巩固的机会,一看到问题就上联想这类问题所涉及的相关知识点和解决它的通法,逐渐对“三基”的掌握达到自动化,能随时拈来。
对“三基”的复习,不是简单的重复,加强记忆,重要的是要深化认识,从本质上发现数学知识之间的联系,从而加以分类、整理、综合,逐渐形成一个条理化,秩序化、网络化的有机体,正真实现由厚到薄。
注意数学能力的提高。通过大量的解题练习,应在运算能力,逻辑思维能力,空间想象能力,利用所学知识分析问题和解决问题的能力等方面得到提高。
注意思想方法的应用。著名数学家波利亚指出:“完善的思想方法,犹如北极星,许多人通过它而找到正确的道路。”说明掌握思想方法是何等的重要。如某些比较得杂的代数问题如果利用数形结合的方法来做,就能轻松遇快地解决。
2.第二阶段是重点复习。时间大约为一个半月。重点是以提高“三性”,即知识与能力的综合性、应用性和创新性。这是99年以来考题的改革方向。经过第一阶段的复习,同学们对“三基”的掌握已经达到了一定的程度,接下来老师就要给同学们组织一些专题了。包括:
知识内在联系型专题,如:函数、方程、不等式专题;函数与数列专题;函数图象与方程的曲线专题等。
思想方法类专题,如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想;运动与变换的思想方法;转化与化归的思想方法等。
应用问题专题,进一步加强各种类型应题的练习,提高阅读理解、建立数学模型的能力。
创新思维专题,加强思维训练,在“通性、通法”的基础上进行创造性思维,体现多一点,少一点算或不急于算。
3.第三阶段是综合练习。时间大约一个月。重点是提高应试水平。通过综合试卷的反复练习,应在答题策略、时间分配,尤其是读题时的一次性感觉、一次性切入、一次性成功上加强训练。
4.第四阶段是保温和自由复习阶段。保持良好精神状态和平静的心理,坚信自己的实力,满怀信心迎接高考。
总之,高三是一个新的起点,我们要坚定信心,脚踏实地按照老师的要求并结合自己情况认真去做,采用科学的学习方法,持之一恒,一定能获得成功的喜悦。
高中数学公式总结
乘法与因式分解
a^2-b^2=(a+b)(a-b)
注:
1.此公式可以用来计算一个数的平方,如第一幅图所示:(计算99^2)
2.此公式可以用来计算二次函数与x轴交点,如第二幅图所示:
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b☞-b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|
一元二次方程
一元二次方程的根:
x1=-b+√(b2-4ac)/2a
x2=-b-√(b2-4ac)/2a
根与系数的关系:
X1+X2=-b/a X1*X2=c/a
注:韦达定理
判别式b2-4ac=0
注:方程有两个相等的实根b2-4ac>0
注:方程有两个不等的实根b2-4ac<0
注:方程没有实根,有共轭复数根
圆及圆锥曲线
圆的标准方程 (x-a)2+(y-b)2=r2
注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0
注:D2+E2-4F>0
抛物线标准方程:
y2=2px
y2=-2px
x2=2py
x2=-2py
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinA
sinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n2=n(n+1)(2n+1)/6
1^+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正余弦定理
a/sinA=b/sinB=c/sinC=2R
注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角
侧面积计算公式
直棱柱侧面积 S=c*h
斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h'
正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l
球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h
圆锥侧面积 S=1/2*c*l=pi*r*l
体积计算公式
锥体体积公式 V=1/3*S*H
圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'*L 注
:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h
圆柱体 V=π*r^2*h
扇形弧长及面积
弧长公式 l=a*r
a是圆心角的弧度数r >0
扇形面积公式 s=1/2*l*r
高三数学学习计划
首先构建知识网络
具体的方法是,先看公式,理解、记住,然后看课后习题,用题来思考怎么解,不要计算,只要思考就好,然后再翻课本看公式定理是怎么推导的,尤其是过程和应用案例。
特别注意这些知识点为什么产生的。如集合、映射的数学意义是为了阐述两组数据(元素)之间的关系。而函数就是立足于集合。并由此产生的充要条件等知识点。
通过这么去理解,你会发现,数学基础很快就能掌握。但记住,一定要循序渐进,不能着急。
对于容易犯的错误,要做好错题笔记,分析错误原因,找到纠正的办法;不能盲目做题,必须在搞清楚概念的基础上做才是有效的,因为盲目大量做题,有时候错误或者误解也会得到巩固,纠正起来更加困难。
对于课本中的典型问题,要深刻理解,并学会解题后反思:反思题意,防止误解;反思过程,防止谬误;反思方法,精益求精;反思变化,高屋建瓴。
这样不仅能够深刻理解这个问题,还有利于扩大解题收益,跳出题海!
这是一轮复习的重点任务,也就是到寒假期间,你就做这些,务必记住:公式、定理以及老师讲的例题一定要理解,记住,并能会自己不借助任何外力,写出来!这是最重要的!练习题吗,估计你没时间做了,那就放掉吧!
其次专题练习
具体的方法是:
首先,买一本分类汇编,这本习题册需要具有这几个特点:1,里面至少包括1-2年本省各地级市的高三上学期期末,一模,二模,甚至是三模的题目分类;2,题目答案是详解。
其次,就是要做这本分类汇编了,先做简单的,比如集合,参数方程,复数,极坐标,简易逻辑等,只会出小题的部分,这些知识点集中,容易短期内提高成绩;然后做中档题,比如,平面向量,概率,立体几何,三角函数等,这些地方既会有小题,也会有答题,但是题目一般不难,经过长期的锻炼后,还是能有提高的;最后就是研究函数,圆锥曲线,导数、数列等部分了,此时要会有舍才能有得,只要第一问,后面得就不要了!
为什么要有详细解答呢?因为,即使你很踏实的做完第一步,给你一些高考模拟题,你也不一定会做,此时,你做的步骤就是,先研究题目,看这道题是属于哪块内容,然后回想相关公式、定理,如果你能根据题目列出式子去解答,那恭喜你,你真是做的不错,如果,你仅仅能回想起相关的公式定理,也没有关系的,接下来你去看解答,看看答案是怎么写的,看明白之后,你自己就要模仿着去写了,注意:最好不要背答案哦!
最后需要提高熟练度
如果你专题复习都已经结束了,那么针对你的二轮也结束了,下面开始三轮复习!那就是熟练度锻炼!此话怎讲呢?就是你二轮复习的时候,要的不是速度,而是你的质量,也就是要把这道题做对,做会,不管时间!但是高考是有时间限制的啊,一共就120分钟,那就得是你把你会做的题目都得练熟,这样才能在考试时,能做完啊!
具体做法是,每天晚上抽出20分钟,做12道选择题,或者6道填空题,或者是2道答题,做完之后快速对答案,然后,也是非常重要的一环,分析题目!你做对了的,要看看你的方法与答案的方法是否一样,不一样的话,学习一下答案的方法;做错了的,那就要分析你错在哪里?如果能找到类似的题目再做一道更好,如果找不到,那就过几天再来做一遍错题!
猜你喜欢: