学习啦>学习方法>教学方法>

初一数学教学教案

欣怡分享

  数学教学教案师教学过程中必不可少的工具,想要提高教学质量,一份教案少不了。以下是学习啦小编分享给大家的初一数学教学教案的资料,希望可以帮到你!

  初一数学教学教案一

  多项式除以单项式

  教学建议

  知识结构

  重点、难点分析

  重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,结果仍是多项式,其项数与原多项式的项数相同。因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。

  难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。

  教法建议

  (1)多项式除以单项式运算的实质是把多项式除以单项式的运算转化为单项式的除法运算,因此建议在学习本课知识之前对单项式的除法运算进行复习巩固。

  (2)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏项。

  (3)要熟练地进行多项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行多项式除以单项式的运算。

  (4)符号仍是运算中的重要问题,用多项式的每一项除以单项式时,要注意每一项的符号和单项式的符号。

  教学设计示例

  教学目标:

  1.理解和掌握多项式除以单项式的运算法则。

  2.运用多项式除以单项式的法则,熟练、准确地进行计算.

  3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.

  4.培养学生耐心细致、严谨的数学思维品质.

  重点、难点:

  1.多项式除以单项式的法则及其应用.

  2.理解法则导出的根据。

  课时安排:

  一课时.

  教具学具:

  投影仪、胶片.

  教学过程:

  1.复习导入

  (l)用式子表示乘法分配律.

  (2)单项式除以单项式法则是什么?

  (3)计算:

  (4)填空:

  规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  2.讲授新课

  例1 计算:

  (1) (2)

  解:(1)原式

  (2)原式

  注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.

  (2)要求学生说出式子每步变形的依据.

  (3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.

  例2 化简:

  解:原式

  说明:注意弄清题中运算顺序,正确运用有关法则、公式。

  练习:(1)P150 1,2,。

  (2)错例辩析:

  有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为 。

  3.小结

  1.多项式除以单项式的法则是什么?

  2.运用该法则应注意什么?

  正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

  4.作业

  P152 A组1,2。

  B组1,2。

  初一数学教学教案二

  单项式除以单项式

  教学建议

  知识结构

  重难点分析

  本节的重点是单项式除以单项式的法则与应用.本章的重点是整式的乘除,作为整式除法内容中不可或缺重要组成部分,单项式除以单项式起着承上启下的作用,它既是同底数幂除法性质的延伸,又是多项式除以单项式的基础和关键,因此本节的重点是单项式除以单项式的法则与应用.

  单项式除以单项式的运算是本节的难点.在单项式除以单项式的计算过程中,既要对两个单项式的系数进行运算,又要对两个单项式中同字母进行指数运算,同时对只在一个单项式中出现的字母及其指数加以注意,这对于刚刚接触整式除法的初一学生来讲,难免会出现照看不全的情况,以至于出现计算错误或漏算等问题.

  教法建议

  (1)单项式除以单项式运算的实质是把单项式除以单项式的运算转化为同底数幂除法运算,因此建议在学习本课知识之前对同底数幂除法运算进行复习巩固.

  (2)要熟练地进行单项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行单项式除以单项式的运算.

  (3)符号仍是运算中的重要问题,用单项式以单项式时,要注意单项式的符号和只在被除式中出现的字母及其指数.

  教学设计示例

  一、教学目标

  1.理解和掌握单项式除以单项式的运算法则.

  2.运用单项式除以单项式的运算法则,熟练、准确地进行计算.

  3.通过总结法则,培养学生的抽象概括能力.

  4.通过法则的应用,训练学生的综合解题能力和计算能力.

  二、教法引导

  尝试指导法、观察法、练习法.

  三、重点难点

  重点 准确、熟练地运用法则进行计算.

  难点 根据乘、除的运算关系得出法则.

  四、课时安排

  1课时.

  五、教具

  投影仪或电脑、自制胶片.

  六、教学步骤

  (一)教学过程

  1.创设情境,复习导入

  前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确.

  (l)叙述同底数幂的除法性质.

  (2)计算:(1) (2) (3) (4)

  学生活动:学生回答上述问题.

  ( ,m,n都是正整数,且m>n)

  【教法说明】通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义.

  2.指出问题,引出新知

  思考问题:( ) (学生回答结果)

  这个问题就是让我们去求一个单项式,使它与 相乘,积为 ,这个过程能列出一个算式吗?

  由一个学生回答,教师板书.

  这就是我们这节课要学习的单项式除以单项式运算.

  师生活动:因为

  所以 (在上述板书过程中填上所缺的项)

  由 得到 ,系数4和3同底数幂 、a及 、 分别是怎样计算的?(一个学生回答)那么由 得到 又是怎样计算的呢?

  结合引例,教师引导学生回答,并对学生的回答进行肯定、否定、纠正,同时板书.

  一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

  如何运用呢?比如计算:

  学生活动:在教师引导下,根据法则回答问题.(教师板书)

  【教法说明】教师根据乘、除法的运算关系,步步深入,引导学生总结得出单项式除以单项式的运算法则,教师给出 ,紧扣计算法则,在师生互动活动中,要充分发挥教师的主导作用和学生的主体作用,调动学生的思维.

  3.尝试计算,熟悉法则

  学生活动:学生自己尝试完成计算题,同桌互相帮助,然后与课本146页例题解答过程相对照,看自己的解答有无问题,若有问题进行改正.

  初一数学教学教案三

  完全平方公式

  教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。

  1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

  这两个公式是根据乘方的意义与多项式的乘法法则得到的.

  这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

  2.只要符合这一公式的结构特征,就可以运用这一公式.

  在运用公式时,有时需要进行适当的变形,例如 可先变形为 或 或者 ,再进行计算.

  在运用公式时,防止发生 这样错误.

  3.运用完全平方公式计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项” 中的2丢掉.

  (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

  4. 与 都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.

  三、教法建议

  1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.

  2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

  3.如何使学生记牢公式呢?我们注意了以下两点.

  (1)既讲“法”,又讲“理”

  在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

  (2)讲联系、讲对比、讲特点

  对于类似的内容学生容易混淆,比如在本节出现的(a+b)2=a2+b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.

  教学设计示例

  一、教学目标

  1.理解完全平方公式的意义,准确掌握两个公式的结构特征.

  2.熟练运用公式进行计算.

  3.通过推导公式训练学生发现问题、探索规律的能力.

  4.培养学生用数形结合的方法解决问题的数学思想.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:尝试指导法、讲练结合法.

  2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项”2ab中的2丢掉.

  (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点·难点及解决办法

    3693503