学习啦>学习方法>通用学习方法>复习方法>

初一数学中考知识点归纳总结

欣怡分享

  初一的数学有很多知识点是中考的重点知识点,所以对于初一的数学知识点进行归纳总结很有必要,以下是学习啦小编分享给大家的初一数学中考知识点归纳,希望可以帮到你!

  初一数学中考知识点归纳

  1.数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:原点,单位长度,正方向.

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.

  2.相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

  3.绝对值

  (1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  ③有理数的绝对值都是非负数.

  (2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  4.有理数大小比较

  (1)有理数的大小比较

  比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.

  (2)有理数大小比较的法则:

  ①正数都大于0;

  ②负数都小于0;

  ③正数大于一切负数;

  ④两个负数,绝对值大的其值反而小.

  【规律方法】有理数大小比较的三种方法

  1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

  2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

  3.作差比较:

  若a﹣b>0,则a>b;

  若a﹣b<0,则a

  若a﹣b=0,则a=b.

  5.有理数的减法

  (1)有理数减法法则:减去一个数,等于加上这个数的相反数. 即:a﹣b=a+(﹣b)

  (2)方法指引:

  ①在进行减法运算时,首先弄清减数的符号;

  ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);

  【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.

  减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.

  6.有理数的乘法

  (1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.

  (2)任何数同零相乘,都得0.

  (3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.

  (4)方法指引:

  ①运用乘法法则,先确定符号,再把绝对值相乘.

  ②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.

  7.有理数的混合运算

  (1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.

  (2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.

  【规律方法】有理数混合运算的四种运算技巧

  1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.

  2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.

  3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.

  4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

  8.科学记数法—表示较大的数

  (1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】

  (2)规律方法总结:

  ①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.

  ②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.

  9.代数式求值

  (1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.

  (2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

  题型简单总结以下三种:

  ①已知条件不化简,所给代数式化简;

  ②已知条件化简,所给代数式不化简;

  ③已知条件和所给代数式都要化简.

  10.规律型:图形的变化类

  图形的变化类的规律题

  首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.

  11.等式的性质

  (1)等式的性质

  性质1、等式两边加同一个数(或式子)结果仍得等式;

  性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.

  (2)利用等式的性质解方程

  利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.

  应用时要注意把握两关:

  ①怎样变形;

  ②依据哪一条,变形时只有做到步步有据,才能保证是正确的.

  12.一元一次方程的解

  定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.

  把方程的解代入原方程,等式左右两边相等.

  13.解一元一次方程

  (1)解一元一次方程的一般步骤:

  去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.

  (2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.

  (3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.

  14.一元一次方程的应用

  (一)、一元一次方程解应用题的类型有:

  (1)探索规律型问题;

  (2)数字问题;

  (3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

  (4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

  (5)行程问题(路程=速度×时间);

  (6)等值变换问题;

  (7)和,差,倍,分问题;

  (8)分配问题;

  (9)比赛积分问题;

  (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

  (二)、利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.

  列一元一次方程解应用题的五个步骤

  1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

  2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

  3.列:根据等量关系列出方程.

  4.解:解方程,求得未知数的值.

  5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

  15.专题:正方体相对两个面上的文字

  (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

  (2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

  (3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

  初一数学考试答题技巧

  1、缺步解答

  初一数学考试中如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

  2、跳步答题

  初二数学解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

  由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

  也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

  3、退步解答

  "以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

  4、辅助解答

  一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。

  书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真—学习认真—成绩优良—给分偏高。

  有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是一种能力。

  初一数学复习方法

  一、注重预习,指导自学。

  我个人认为,预习应该来说在初中阶段还是占有比较重要的地位的,而在小学阶段一般不那么重视,因此,到了初一大多数学生不会预习,即使预习了,也只是将课文从头到尾读一遍。在指导学生预习时应要求学生做到:一粗读,首先大致浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,多问些“为什么”,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。课堂上带着自己的问题听老师讲课,这样可以有目的的学习,提高课堂的有效时间。

  二、认真听讲,会记笔记

  课堂听讲很重要,认真听课可以事半功倍。由于课前进行了充分复习,对本节课还有不理解的地方,那么在老师的讲课过程中,看老师是如何讲解这个知识点的,对比一下自己在预习过程自己存在的障碍。

  对于自己已经理解的知识点也要认真听课,加深记忆,看老师有什么独到之处,对老师强调的地方更应该引起自己的注意。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”

  代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在作笔记时注意:记笔记服从听讲,要掌握记录时机;记要点、记疑问、记解题思路和方法;记小结、记课后思考题。记笔记是为了更好地总结和复习,切忌在课堂上一味抄写老师的板书。

  三、先复习后做作业

  首先应树立正确的作业观,不要为完成作业而完成作业,作业是为了学生更好地掌握知识,让老师了解学生存在的问题。而许多同学做作业时,通常是拿起题就做,一旦遇到困难了,才又回过头来翻书、查笔记,这是一种不良的习惯。做作业的第一步应是先复习有关的知识。复习时可以采取“过电影”的方式,在头脑中搜索一下课堂上老师所讲解的知识,努力将所学知识回忆起来。若实在回忆不起来,再翻开课本

  或笔记阅读对照,通过这种方式将所学知识温习一遍,做到心中有数后再去做作业。做完题后,应该从头到尾仔细浏览一遍,检查一下解题的步骤、思路是否正确。

猜你喜欢:

1.初一数学重点知识点归纳有哪些

2.初一数学重点知识总结归纳

3.初一数学必考知识点总结归纳

4.初一数学重要知识点总结

5.初一数学上册知识点汇总整理

    3820850