学习啦>原创作品专栏>随笔写作>

高考数学理科模拟试卷及答案

邱妹分享

迎战高考,十年寒窗,今日出招。早睡早起休息好,餐餐营养搭配好,生冷零食远离好,考试用具准备好,有备而战发挥好。祝高考顺利,金榜题名!下面就是小编给大家带来的高考数学理科模拟试卷及答案,希望大家喜欢!

第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。

1.设全集,集合,则()

A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}

2.若复数是纯虚数,则实数()

A.±1B.C.0D.1

3.已知为等比数列,若,则()

A.10B.20C.60D.100

4.设点是线段BC的中点,点A在直线BC外,,则()

A.2B.4C.6D.8

5.右图的算法中,若输入A=192,B=22,输出的是()

A.0B.2C.4D.6

6.给出命题p:直线

互相平行的充要条件是;

命题q:若平面内不共线的三点到平面的距离相等,则∥。

对以上两个命题,下列结论中正确的是()

A.命题“p且q”为真B.命题“p或q”为假

C.命题“p且┓q”为假D.命题“p且┓q”为真

7.若关于的不等式组表示的区域为三角形,则实数的取值范围是()

A.(-∞,1)B.(0,1)C.(-1,1)D.(1,+∞)

8.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的方法有()

A.36种B.45种C.54种D.84种

9.设偶函数的

部分图像如图所示,为等腰直角三角形,

∠=90°,||=1,则的值为()

A.B.C.D.

10.已知点,动圆C与直线切于点B,过与圆C相切的两直线相交于点P,则P点的轨迹方程为()

A.B.

C.D.

11.函数有且只有两个不同的零点,则b的值为()

A.B.C.D.不确定

12.已知三边长分别为4、5、6的△ABC的外接圆恰好是球的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P-ABC的体积为()

A.5B.10C.20D.30

第Ⅱ卷

二、填空题:本大题共4小题,每小题5分。

13.设二项式的展开式中的系数为A,常数项为B,若B=4A,则。

14.已知函数,其中实数随机选自区间[-2,1],则对,都有恒成立的概率是。

15.若某几何体的三视图(单位:㎝)如图所示,

则此几何体的体积等于㎝3。

16.定义函数,其中表示不超过的

整数,当时,设函数的值域

为集合A,记A中的元素个数为,

则的最小值为。

三、解答题:本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)

已知角的顶点在原点,始边与x轴的正半轴重合,终边经过点.

(Ⅰ)求的值;

(Ⅱ)若函数,求函数在区间上的值域。

18.(本小题满分12分)

如图,已知平行四边形ABCD和平行四边形ACEF所在的平面相交于

直线AC,EC⊥平面ABCD,AB=1,AD=2,∠ADC=60°,AF=。

(I)求证:AC⊥BF

(II)求二面角F-BD-A的大小

19.(本小题满分12分)

第12届全运会将于2013年8月31日在辽宁沈阳举行,组委会在沈阳某大学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如右所示的茎叶图(单位:㎝),若身高在175㎝以上(包括175㎝)定义为“高个子”,身高在175㎝以下(不包括175㎝)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.

(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?

(II)若从所有“高个子”中选出3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

20.(本小题满分12分)

在直角坐标系xoy上取两个定点,再取两个动点且=3.

(Ⅰ)求直线与交点的轨迹的方程;

(II)已知,设直线:与(I)中的轨迹交于、两点,直线、的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标

21.(本小题满分12分)

函数.

(Ⅰ)当x>0时,求证:;

(II)在区间(1,e)上恒成立,求实数的范围;

(Ⅲ)当时,求证:…()

请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做题时用2B铅笔在答题卡上把所选题目的题号涂黑。

22.略

23.(本小题满分10分)选修4-4坐标系与参数方程

以平面直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系.

(Ⅰ)试分别将曲线Cl的极坐标方程和曲线C2的参数方程(t为参数)化为直角坐标方程和普通方程:

(II)若红蚂蚁和黑蚂蚁分别在曲线Cl和曲线C2上爬行,求红蚂蚁和黑蚂蚁之间的距离(视蚂蚁为点).

高考数学理科模拟试卷及答案相关文章

广东高考数学理三轮模拟试题及答案

高考文科数学模拟试卷及答案

高考数学三轮模拟试题及答案

高考英语模拟试题及答案全国卷

高考数学模拟试题提分专项训练

高三数学概率大题(含答案)

高三数学数列大题专题训练(含答案)

高考文综备考模拟试题及答案

高考数学必考题型以及题型分析

做高考数学的选择题规律

    上一篇:高考数学文科模拟试卷及答案

    下一篇:广东全国高考语文模拟试题及答案解析

    453523