学习啦>学习方法>初中学习方法>初三学习方法>九年级数学>

九年级数学优秀学习方法

晓芬分享

学习方法应该根据学生的个体差异和需求进行个性化定制,以满足不同学生的学习需求和提高学习效果。这里给大家分享一些关于九年级数学优秀学习方法,供大家参考学习。

九年级数学优秀学习方法

九年级数学优秀学习方法

(一)、充分联想回忆基本知识和题型:

按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

(二)、全方位、多角度分析题意:

对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

(三)恰当构造辅助元素:

数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

九年级数学常用学习方法

一、做出来不如讲出来,听得懂不如说得通。

做10道题,不如讲一道题。孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。

二、举一反三,学会变通。

举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!

在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。

举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。

三、建立错题本,培养正确的思维习惯

每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。

一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。

尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。

四、图形推理是培养逻辑思维能力最好的工具

假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。

几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。

因此,多训练一些图形推理题,对其逻辑思维很有帮助。

如何学好九年级数学呢

首先,对已知关系进行化简,找出所有能找出的等量关系式。其次,将所求或所证进行变形,予以找出的等量关系联系起来。运用适当的公式、反推或技巧性较强的方法进行求解或求证,基本思路和几何是一样的,同样需要平时的积累。其他的题型基本思路和上述几何、代数基本相同,相信同学们在熟练运用几何代数的学习方法后定能总结出自己的一套思维模式,在数学的基本学习中取得良好的成绩。

如何高效学习九年级数学

作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。还应多树立数学解题思想:如,方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。

九年级数学简单学习方法

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

①遗憾之错:就是分明会做,反而做错了的题

②似非之错:记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整等等

③无为之错:由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题

原因找到后就消除遗憾、弄懂似非、力争有为,切实解决“会而不对、对而不全”的老大难问题。

    2139585