突破选择题的六种解法
选择题是各地中考必考题型。对于选择题,我们既要掌握基本题型的一般解法,更要学会,灵活运用特殊法。接下来小编为大家整理了初三数学学习相关内容,一起来看看吧!
突破选择题的六种解法
第一、直接法
这是解选择题最常用,最基本的一种方法,我们可以直接从条件出发,运用相关的概念、性质、定理等知识点,通过推理运算得出结论。
这种方法的优点是,解题自然不受选项的影响;缺点是有些计算和推理,会浪费大量的时间和精力,而且有些题是不能用直接法来解题的。大家一起来看例题1:
第二、特例法
什么叫特例法呢?就是用满足已知条件的特例来代替一般条件,得出特殊结论,然后对各个选项进行验证,而作出正确判断的方法。常用的特例法有特殊值、特殊点、特殊图形等,我们举个例子来说,看下面例题2:
第三、排除法
这也是我们做选择题的时候最常用的一种方法,通常从题目所给的条件入手,运用定理、性质、公式来估计或者估算,排除干扰项,得出正确答案。
这种方法的优点是,我们可以通过观察,比较分析和判断,进行简单的推理和计算,从而得出正确答案;缺点是如果对隐含的条件挖掘不深,或者是没有抓住问题的本质特征的时候,在排除过程中就会容易出现遗漏,而做出错误的判断。看例题3:
第四、验证法
所谓的验证法是指将条件,一个一个的代入选项,或者是将每一个选项分别代入题目当中进行检验,从而判断出选项的方法,我们看下面这道题的讲解:
第五、图解法
在解答图形、图像有关的选择题时,我们常常要运用数形结合的思想方法,画出示意图,通过观察、比较,来发现图形图像的特点,迅速作出选择。
这种方法的优点是,图形比较直观,可以把复杂的计算推理变得更简单;缺点是,需要同学们有很强的数学基础知识和空间想象力。举个例子来说:
总之,选择题题目千变万化,有时需要将多种方法交错使用,甚至对于个别题目可能还有其他更好的方法,所以同学们解选择题的时候,要注意题目结构特点,充分用到题目本身和供选择的答案所提供的信息,要掌握解题的基本方法,同时也要开拓思维,讲究技巧,才能又准又快地解决这些题目,在中考中才会有好的成绩。
复习的基本原则
以《课程标准》和数学教材为依据,立足于掌握和巩固基本知识和基本技能,强化主干知识,注重教材的重点和难点,加强对薄弱环节的复习,及时查缺补漏,注重知识应用能力,培养灵活及综合解决问题的能力。
复习中的几点建议
1.注重课本知识,查漏补缺。全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中 的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的和外延,牢固掌握 法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理 解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系 统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温 思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本 中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等 内容,我们也一定要引起重视。
2.注重课堂学习,提高效率。在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础 知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握 的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓 住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
3.夯实基础知识,学会思考。在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必 须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识 点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学 到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
4.注意知识的迁移,学会融会贯通。课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系, 我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有 效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课 本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的 因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
5.复习形成梯度,选择典型习题。如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个 阶段的练习题要选择有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自 己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
6.重视基础知识,注重解题方法。基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结 构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并 不依赖于那些特别的,没有普遍性的解题技巧。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。在复习时应对每一种方法的,它所适应的题型,包括解题步骤都应该熟练掌握。
7.形成数学思想,学会运用。数学思想的进一步形成和继续培养是十分重要的,因为它的应用是十分广泛的。比如方程思想、特殊和一般的思想、数形结合的 思想,函数思想、分类讨论思想、化归与转化的思想等,我们要加深对这些思想的深刻理解,目前要多做一些相关内容的题目;从近几年中考情况看,最后的“压轴 题”往往与此类题型有关,不少同学解这类问题时,要么只注意到代数知识,要么只注意到几何知识,不会熟练地进行代数知识与几何知识的相互转换。
8.综合运用,培养能力。通过对课本典型例题、习题的有机演变和拓展延伸,让自己在参与探究中提高应变能力和创新能力。以课本典型例题、习题为题源进 行一题多解、一题多变的训练是落实新课程理念、强化数学创新教学的重要途径。课本上的某些例(习)题看似平淡无奇,但如果我们以此为蓝本,改变其条件或结 论,运用不同的知识和手段,编拟出形式新颖的题目,这对于提高自己的认识层次、强化探索创新和应变迁移能力,是有很大帮助的。因此,在这个阶段,我们同时 还要做到能把各个章节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。纵观中考数学试题中对能力的考查,除了考查运算能力、空间想象能力和逻辑 思维能力以及分析和解决纯数学问题的能力外,又强化了阅读理解能力、探索创新能力和数学应用能力,以及对同学们的情感、意志、毅力、价值观等非智力因素的 考查,就必然使中考数学试题对能力的考查进入一个新的阶段。
突破选择题的六种解法相关文章: