学习啦>学习方法>初中学习方法>初一学习方法>七年级数学>

新人教版七年级数学上册课本教案

小恒分享

  一个人只有在早晨开始就努力学习,这一天才不会被浪费掉。我们每一个人都是应该抓住每一分,每一秒,不让他们偷跑掉。同学们,请记住“成功,属于珍惜时间的人”,珍惜自己的时间,对你自己是有益的。学会高效的学习方法,可以提高自身的学习能力。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。

  新人教版七年级数学上册课本教案

  教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3,体验分类是数学上的常用处理问题的方法。

  教学难点正确理解分类的标准和按照一定的标准进行分类

  知识重点正确理解有理数的概念

  教学过程(师生活动)设计理念

  探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

  思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  也可以教师说出一些数,让学生进行判断。

  集合的概念不必深入展开。

  创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

  有理数这个分类可视学生的程度确定是否有必要教学。

  应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业1,必做题:教科书第18页习题1.2第1题

  2,教师自行准备

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

  念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

  行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

  类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

  2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

  3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

  新人教版七年级数学上册课本教案

  教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动)设计理念

  设置情境

  引入课题教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  合作交流

  探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论问题3:

  1,你能举出一些在现实生活中用直线表示数的实际例子吗?

  2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4,每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结请学生总结:

  1,数轴的三个要素;

  2,数轴的作以及数与点的转化方法。

  本课作业1,必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

  新人教版七年级上册数学课本教案

  教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

  2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

  3,体验数形结合的思想。

  教学难点归纳相反数在数轴上表示的点的特征

  知识重点相反数的概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类

  4,-2,-5,+2

  允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

  (引导学生观察与原点的距离)

  思考结论:教科书第13页的思考

  再换2个类似的数试一试。

  归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力

  培养学生的观察与归纳能力,渗透数形思想

  深化主题提炼定义给出相反数的定义

  问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

  学生思考讨论交流,教师归纳总结。

  规律:一般地,数a的相反数可以表示为-a

  思考:数轴上表示相反数的两个点和原点有什么关系?

  练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

  深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

  强化互为相反数的数在数轴上表示的点的几何意义

  给出规律

  解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

  学生交流。

  分别表示+5和-5的相反数是-5和+5

  练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法

  小结与作业

  课堂小结1,相反数的定义

  2,互为相反数的数在数轴上表示的点的特征

  3,怎样求一个数的相反数?怎样表示一个数的相反数?

  本课作业1,必做题教科书第18页习题1.2第3题

  2,选做题教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

  2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

  3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

    697716