初一数学《整式的加减》教学教案设计
人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。接下来是小编为大家整理的初一数学《整式的加减》教学教案设计,希望大家喜欢!
初一数学《整式的加减》教学教案设计一
[学习目标]
1、认识同类项,理解合并同类项法则,能进行同类项的合并。
2、能运用运算率去括号
[考点归纳]
考点1: 合并同类项 考点2: 去括号法则 考点3: 整式的加减
[考点例题]
例1.合并下列多项式中的同类项.
(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+b2.
例2. 去括号,合并同类项
(1)-3(2s-5)+6s (2)3x-[5x-3( x-4)]
(3)6a2-4ab-4(2a2+ ab) (4)
例3.(1)已知一个多项式与a2-2a+1的和是a2 +a-1,求这个多项式。
(2)已知A=2x2+y2+2z,B=x2-y2 +z ,求2(A-B)+B
[当堂检测]
1.将如图两个框中的同类项用线段连起来:
2.当m=________时,-x3b2m与 x3b是同类项.
3.如果5akb与-4a2b是同类项, 那么5akb+(-4a2b)=_______.
4、下列说法正确的是( )
A.字母相同的项是同类项 B.只有系数不同的项,才是同类项
C.-1与0.1是同类项 D.-x2y与xy2是同类项
5合并下列多项式中的同类项.
(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+b2.
2 先化简,再求值。
(1)(5a2-3b2)+(a2-b2)- (5a2-2b2) 其中a=-1,b=1
(2)9a3-[-6a2+2(—a3- a2)] 其中a=-2
3. 且
求 的值。
[课外练习]
1.下列合并同类项正确的是 ( )
A.8a-3a=5 B. 7a2+2a3=9a2 C. 3ab2-2a2b=ab2 D. 3a2b-2ba2=a2b
2.ab减去 等于 ( )
A. ; B. ;
C. ; D.
3.当 与 时,代数式 的两个值 ( )
A.相等; B.互为倒数;
C.互为相反数; D.既不相等也不互为相反数
4下列各题中,去括号正确的是 ( )
初一数学《整式的加减》教学教案设计二
教学目标
知识技能:理解同类项的概念,并能正确辨别同类项。
过程方法:掌握合并同类项的法则,能进行简单同类项的合并。
情感态度:运用类比的数思想方法,发展学生探究能力,问题的抽象概括能力。 教学重点 合并同类项法则。 教学难点 对同类项概念的理解以及合并同类项法则的应用。 教学准备 多媒体 教学方法 互动交流法、小组研讨法 教学流程 创设情境 导入新课→合作交流 解读探究→应用迁移 巩固提高→总结反思 拓展升华 教 学 互 动 设 计 设计意图 一、创设情境 导入新课
【问题1】我们到动物园参观时,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里.为什么不把老虎与鹿关在同一个笼子里呢?超市里又为什么把各种物品摆放在不同的柜台上?这些说明什么常识道理?
【问题2】青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度可以达到100千米/时,在非冻土地段的行驶速度可以达到120米/时,请根据这些数据回答下列问题:
在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所用时间的 倍,如果通过冻土地段需要 小时,你能用含 的式子表示这段铁路的全长吗?
学生活动:分析已知量与未知量之间的数量关系。
学生各抒己见。引导学生意识到“归类”存在于生活中。
在具体情境中用整式表示问题中的数量关系,利用实际问题吸引学生的注意力。 二、合作交流 解读探究
学生思考并回答: 100 +252t
【问题3】式子100 +252 能化简吗?依据是什么?
探究1
(1)运用有理数的运算律计算:
(2)根据(1)中的方法完成下面的运算,并说明其中的道理.
探究2
(1) ( )
(2) ( )
(3) ( )
学生活动:在独立完成的基础上,小组合作交流。
教师提问,想一想:1.上面三个多项式有哪些单项式组成?
2.每个多项式中的单项式有什么共同特点?你能运算吗?
观察多项式中各项的特点,得出同类项的概念以及合并同类项的概念.
同类项:所含字母相同,并且相同的字母的指数也相同的项.
合并同类项:把多项式中的同类项合并成一项.
1、玩一玩:找同类项朋友
方法:1、现在,黑板上有16张写有单项式的卡片;
2、同学们把认为是同类项的卡片用数字序号 找出来;
3、请其他同学做裁判,看看他们有没有找错朋友。
学生活动:合作交流,找出答案,明确过程。
教师活动:教师巡回指导,待学生完成后,叫学生回答,确认。
【问题4】
试一试:试着把多项式合并同类项:
这个多项式中含有哪些项?
各项的系数是多少?
那些项可以合并成一项?为什么?
类比有理数的运算,探究得出合并同类项的法则.
法则:所得项的系数是合并前各同类项系数的和,字母部分不变.
注意:(1) 合并的前提是同类项。
(2) 合并指的是系数相加,字母和字母的指数保持不变。
(3) 合并同类项的根据是加法交换律、结合律以及分配律。
师生活动:教师引导下,师生合作得出结论,共同归纳总结。
3.练一练:下列计算对不对?若不对,请改正。
师生活动:教师出示问题,学生合作交流,叫个别同学回答。 提出问题3,让学生带着这个问题来解决探究1.
独立完成探究1中的(1),并对(2)进行分组讨论.
通过对探究1和探究2的探讨,引出同类项的概念。
学生接受同类项的定义不是很难,但是做到判断无误却很困难,需要通过练习,反复强调同类项判断标准,使学生通过甄别、比较,逐步提高准确度和熟练程度.
提出问题4,让学生通过对问题的解决,得出合并同类项概念以及合并同类项的法则。 三、应用迁移 巩固提高
【例1】合并下列各式的同类项:
(1) ;
(2) ;
(3) .
解(1)
(2)
(3)
【例2 】 (1) 求多项式2x2-5x+x2+4x-3x2-2的值,其中 ;
(2) 求多项式 的值,其中 ,b=2,c=-3的值。解:(1)
(2)
【例3 】(1) 水库中水位第一天连续下降了a小时,每小时平均下降2cm;第二天连续上升了a小时,每小时平均上升0.5m,这两天水位总的变化情况如何?
初一数学《整式的加减》教学教案设计三
知 识与技能 能运用运算律探究去括号法则,并且利用去括号法则将整式 化简 过程与方法 经历类比带有括号的有理数的运算,发现去括号时的符号变化规律,归纳出去括号法则 ,培养学生观察、分析、归纳 能力。 情感态度与
价值观 让学生在探究活动中,体验类比思想 教学重点 去括号法则 教学难点 括号前面是“—”时,去括号后的符号变化 教学过程设计 教学过程 备 注 [活动1]
[活动2]
讲授新课
我们 知道,化简有括号的式子首先应去掉括号,你能用乘法分配律计算下面的题目吗/
(1)20(a+b)= -20(a+b)=
比较上面两式,你能发现 去括号时符号变化的规律吗?
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;
注意:去括号时要对括号里的每一项的符号都要考虑,做到要变都变,要不变则都不变;另外,括号内原有几项去掉括号 后仍有几项。
学生尝试将引言中的题目解答。
初一数学《整式的加减》教学教案设计四
一、温故互查(二人小组完成)
1、什么是同类项?如何合并同类项?
2、利用乘法分配律计算:
a(b-c)=
3(x-1)=
-1×(x-1)=
-(x-1)=
如何利用乘法分配律去掉上面的括号?去括号前后,括号里各项的符号有什么变化?
二、设问导读
阅读教材P66——68完成下列问题:
在教材上, eq oac(○,1) 式合 eq oac(○,2) 式是怎样化简的?八花间过程补充完整。
eq oac(○,1) 100t+120(t-0.5)
=100t+120t+120×( )
=
eq oac(○,2) 100t-120(t-0.5)
=100t-120t-120×( )
=
复述教材去括号法则。
特别地,+(x-3)与-(x-3)可以分别看作是 与 分别乘以(x-3)。
阅读例4和5.
在教材例4中(2)的第二个括号前的因数是 ,计算时应当注意什么?
在教材例5中,式子2(50+a)和2(50-a)分别表示什么?为什么要加括号?不加行吗?
三、自我检测
判断下列各等式是否正确。
(1)2(3x+y)=6x+y ( ) (2)6(x-2)=6x-12 ( )
(3) -7(x+3)= -7x+21 ( ) (4)8(a+1)=8a+1 ( )
(5) -(a-10)= -a-10 ( ) (6) -a+b=-(b+a) ( )
(7)2-3x=-(3x-2)
初一数学《整式的加减》教学教案设计相关文章: