学习啦>学习方法>初中学习方法>初二学习方法>八年级数学>

八年级数学知识点梳理

跃瀚分享

学习知识要善于思考,思考,再思考。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。

八年级上册数学知识点沪科版

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

八年级上册数学知识点

不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x;0,y;0

点P(x,y)在第二象限:x;0,y;0

点P(x,y)在第三象限:x;0,y;0

点P(x,y)在第四象限:x;0,y;0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0,x为任意实数

点P(x,y)在y轴上,x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;

(3)点P(x,y)到原点的距离等于根号..x+yxy

初二下册数学知识点归纳

第一章一元一次不等式和一元一次不等式组

一、不等关系

1、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式.

2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.

3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.

非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0

非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0

二、不等式的基本性质

1、掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c,a-c>b-c.

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果a>b,并且c>0,那么ac>bc,.

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果a>b,并且c<0,那么ac

八年级数学知识点梳理相关文章:

八年级数学知识点整理归纳

八年级下册数学知识点整理

人教版八年级数学上册知识点总结

初二数学知识点归纳上册人教版

初二数学知识点整理归纳

初二数学知识点归纳

八年级数学上册知识点归纳

八年级数学知识点总结

初二数学知识点复习整理

数学八年级上册知识点整理

    1090046