学习啦>学习方法>小学学习方法>四年级方法>四年级数学>

人教版小学四年级下册数学知识点复习

嘉馨分享

  四年级是学生数学思维逐渐独立化的重要转型阶段,是学生自我学习能力培养的关键时机。学习啦小编为四年级师生整理了四年级数学下册知识点复习,希望大家有所收获!

  人教版小学四年级下册数学知识点1

  四则运算

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  位置与方向:

  1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)

  注意:1、比例尺2、正北方向3、角的画法

  2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)

  3、地图的三要素:图例、方向、比例尺。

  4.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。

  5.常用的八个方位:东、南、西、北、东南、东北、西南、西北。

  运算定律及简便运算:

  一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起使用。

  3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

  二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

  2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。( a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。

  3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c

  三、简便计算

  1.连加的简便计算:使用加法结合律(把和是整十、整百、整千、的结合在一起)

  2.连减的简便计算:连续减去几个数就等于减去这几个数的和。

  3.加减混合的简便计算: 第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)

  4.连乘的简便计算: 使用乘法结合律:把常见的数结合在一起 25与4; 125与8 ;125与80

  5.连除的简便计算:①连续除以几个数就等于除以这几个数的积。②除以几个数的积就等于连续除

  以这几个数。

  6.乘、除混合的简便计算: 第一个数的位置不变,其余的因数、除数可以交换位置。

  四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c = a÷(b×c)

  小数的意义和性质:

  1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。

  2、分母是10、100、1000……的分数可以用小数来表示。

  3、小数是十进制分数的另一种表现形式。

  4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  5、每相邻两个计数单位间的进率是10。

  6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。

  7、 小数的数位顺序表

  6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)

  8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

  9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。

  10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。

  11、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。

  12、小数点的移动

  小数点向右移:

  移动一位,小数就扩大到原数的10倍; 移动两位,小数就扩大到原数的100倍;

  移动三位,小数就扩大到原数的10 00倍;……

  小数点向左移:

  移动一位,小数就缩小10倍,即小数就缩小到原数的 ; 移动两位,小数就缩小100倍,即小数就缩小到原数的 ; 移动三位,小数就缩小1000倍,即小数就缩小到原数的

  13、生活中常用的单位:

  质量: 1吨=1000千克; 1千克=1000克 ;……

  长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米

  1分米=100毫米 1米=10分米=100厘米=1000毫米

  面积: 1平方米= 100平方分米 1平方分米=100平方厘米

  1平方千米=100公顷 1公顷=10000平方米

  人民币: 1元=10角 1角=10分 1元=100分

  长度单位:千米 ———— 米 ———— 分米 ———— 厘米

  面积单位:平方千米———公顷———平方米————平方分米———平方厘米

  质量单位:吨————千克————克

  14、小数的近似数(用“四舍五入”的方法):

  (1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。

  (2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。

  (3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。

  (4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。

  (5)在表示近似数时,小数末尾的“0”不能去掉。

  人教版小学四年级下册数学知识点2

  三角形:

  1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

  2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。

  3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。

  4、边的特性:任意两边之和大于第三边。

  5、为了表达方便,用字母a、b、c分别表示三角形的三个顶点,三角形可表示成三角形abc。

  6、三角形的分类:

  按照角大小来分:锐角三角形,直角三角形,钝角三角形。

  按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

  等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)

  小数的加减法:

  1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。

  2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。

  3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)

  统计:

  1、条形统计图优点:直观地反映数量的多少。

  2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。

  3、折线统计图中,变化趋势指:上升或者下降。

  4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。

  5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。 植树问题

  (一)植树问题:

  1、 两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1

  2、 两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1

  间隔数=总长度 ÷ 间隔长度

  情况分类:1、两端都植:棵数=间隔数+1 2、一端植,一端不植:棵数=间隔数

  3、两端都不植:棵数=间隔数-1 4、封闭:棵数=间隔数

  (二)锯木问题: 段数=次数+1; 次数=段数-1 总时间=每次时间×次数

  (三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4

  整个方阵的总数目是:边长×边长

  (四)封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数

  四则运算

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  位置与方向:

  1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)

  注意:1、比例尺2、正北方向3、角的画法

  2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)

  3、地图的三要素:图例、方向、比例尺。

  4.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。

  5.常用的八个方位:东、南、西、北、东南、东北、西南、西北。

  运算定律及简便运算:

  一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起使用。

  3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

  二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

  2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。( a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。

  3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c

  三、简便计算

  1.连加的简便计算:使用加法结合律(把和是整十、整百、整千、的结合在一起)

  2.连减的简便计算:连续减去几个数就等于减去这几个数的和。

  3.加减混合的简便计算: 第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)

  4.连乘的简便计算: 使用乘法结合律:把常见的数结合在一起 25与4; 125与8 ;125与80

  5.连除的简便计算:①连续除以几个数就等于除以这几个数的积。②除以几个数的积就等于连续除

  以这几个数。

  6.乘、除混合的简便计算: 第一个数的位置不变,其余的因数、除数可以交换位置。

  四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c = a÷(b×c)

  小数的意义和性质:

  1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。

  2、分母是10、100、1000……的分数可以用小数来表示。

  3、小数是十进制分数的另一种表现形式。

  4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  5、每相邻两个计数单位间的进率是10。

  6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。

  7、 小数的数位顺序表

  6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)

  8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

  9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。

  10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。

  11、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。

  12、小数点的移动

  小数点向右移:

  移动一位,小数就扩大到原数的10倍; 移动两位,小数就扩大到原数的100倍;

  移动三位,小数就扩大到原数的10 00倍;……

  小数点向左移:

  移动一位,小数就缩小10倍,即小数就缩小到原数的 ; 移动两位,小数就缩小100倍,即小数就缩小到原数的 ; 移动三位,小数就缩小1000倍,即小数就缩小到原数的

  13、生活中常用的单位:

  质量: 1吨=1000千克; 1千克=1000克 ;……

  长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米

  1分米=100毫米 1米=10分米=100厘米=1000毫米

  面积: 1平方米= 100平方分米 1平方分米=100平方厘米

  1平方千米=100公顷 1公顷=10000平方米

  人民币: 1元=10角 1角=10分 1元=100分

  长度单位:千米 ———— 米 ———— 分米 ———— 厘米

  面积单位:平方千米———公顷———平方米————平方分米———平方厘米

  质量单位:吨————千克————克

  14、小数的近似数(用“四舍五入”的方法):

  (1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。

  (2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。

  (3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。

  (4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。

  (5)在表示近似数时,小数末尾的“0”不能去掉。

  三角形:

  1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

  2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。

  3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。

  4、边的特性:任意两边之和大于第三边。

  5、为了表达方便,用字母a、b、c分别表示三角形的三个顶点,三角形可表示成三角形abc。

  6、三角形的分类:

  按照角大小来分:锐角三角形,直角三角形,钝角三角形。

  按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

  等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)

  小数的加减法:

  1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。

  2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。

  3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)

  统计:

  1、条形统计图优点:直观地反映数量的多少。

  2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。

  3、折线统计图中,变化趋势指:上升或者下降。

  4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。

  5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。 植树问题

  (一)植树问题:

  1、 两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1

  2、 两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1

  间隔数=总长度 ÷ 间隔长度

  情况分类:1、两端都植:棵数=间隔数+1 2、一端植,一端不植:棵数=间隔数

↓↓↓ 下页更多"人教版小学四年级下册数学知识点考题" ↓↓↓

2966520