学习啦>学习方法>初中学习方法>初三学习方法>九年级数学>

中考数学最易出错的61个知识点及代数解答题

惠敏分享

  初中的数学是不是让你抓破脑袋?有哪些好的数学学习方法呢?以下是小编给大家带来的中考数学最易出错的61个知识点及代数解答题,仅供考生参考,欢迎大家阅读!

  2019年常见易错题之数与代数解答题

  一 很多孩子对于基础的概念和定理记忆不清

  概念定理是解题的工具,这块没掌握透肯定无法解题;

  二 能知道概念定理大致的意思,但是不知道本质这样也无法解题;

  因为题型中各种条件的变换考查的是要求孩子对概念的深度理解和容易混淆的地方;

  三 不会分类题型

  每个章节的题量可以演变出非常多,但是常见的考点和常见的题型就是那么几个或者十几个;

  很多孩子每天做题之后却不分类,哪道题属于哪类题型;

  这类题型包含几种常见的题?常见的解题思路是什么,有个几个解题步骤,涉及到哪类概念和定理;

  每个步骤需要如何推导;

  四 不会总结解题思路

  每道题解题的时候需要看到的是内在的部分,总共有几个步骤,每个步骤思考点和切入点在哪,运用到哪些常见的定理和公式以及相关的推论,这些定理 公式和推论是否都理解清晰;这些概念是如何结合在一起的;

  题永远解不完,所以一定需要对题进行分类,只有这样孩子才能进步;

  五 不会对题进行分类,每次做到的都是新题

  每天做作业的时候从不留时间对做完的题进行分类;

  哪道题是原来做过类似的?自己目前的掌握程度如何?

  1 是不熟悉?

  2 能大致解答,换道题就无法解?

  3 这类题都熟练掌握解题思路,通用的解题思路已经很熟悉,

  4 这道题重复犯错,原先做过的但还是错了,今天错了又没做整理和分析;

  六 每天写作业的时间不稳定

  今天其他科作业多,那这科的作业就短时间内随意写完;

  今天其他科作业少,那物理这科的时间就投入很多的时间多写很多;

  以上两者都是不建议的,尽力算好每天的时间,每天把作业几个几个环节都做好,这样才能持续进步;

  七 写作业前不复习

  很多孩子每天回来吃饭完,书包掏出作业本就是开始一顿猛写;从来不复习当天课堂笔记;

  这是一种很不好的学习习惯,写作业前看下笔记回忆思考上课的内容;

  这样才能会议期老师说的一些细节和重要的地方,这样才能更深入的掌握其中的一些知识点和解题思路;

  八 每周不做阶段计划和总结

  每周末没找出一定的时间回顾本周上的内容,做过的练习,哪些是对的?哪些是错的?

  哪些题型需要分类整理在一起?

  哪些题自己掌握得熟练?

  哪些题型掌握得不够?需要重新找题练习结合课本知识点吃透?

  哪些题重复犯错需要重新整理到错题本上改进练习?

  九 没耐心 不专注

  初中物理每年中考的考点不多,题型也不多,总体难度低于高中很多;

  很多孩子现在物理成绩不好,做题的时候一遇到难题就到没信心,觉得自己学不好物理,

  或者想自己就是不会解这类题型,其实这完全没必要,只是自己被自己的情绪干扰了,

  积极点,今天不会做只是暂时知识点没学透;明天再问下老师,把知识点吃透,这样后天自己再认真去总结不就会了么;

  十 没信心,遇到一点小挫折就放弃

  很多孩子会由于某次的考试不理想就轻易的否定自己,觉得自己不行,觉得自己这科就是学不好;

  觉得自己这科就是没基础,没别人有天分,其实这都是负面思想在作怪;

  今天不会并不代表明天不会,你需要的是多一些耐心;全身心的投入去做去思考,去总结;

  你一定能收获到你的果实,就怕你赖着不动;那样的话明天真的是无法进步了;

  2019年中考数学最易出错的61个知识点

  初三同学们一轮复习已经紧张的开始了,在复习的过程中,同学们要注意知识的来源与应用,还要知道这个知识容易出错的地方,所以今天小互给大家汇总了考试中常常出错的八个模块的易错知识点,同学们务必记住哦!

  数与式

  易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

  易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

  易错点3:平方根、算术平方根、立方根的区别。填空题必考。

  易错点4:求分式值为零时学生易忽略分母不能为零。

  易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

  易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

  易错点7:计算第一题必考。五个基本数的计算:0 指数,三角函数,绝对值,负指数,二次根式的化简。

  易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!

  易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

  方程(组)与不等式(组)

  易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

  易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!

  易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

  易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

  易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

  易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

  易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

  易错点8:利用函数图象求不等式的解集和方程的解。

  函数

  易错点1:各个待定系数表示的的意义。

  易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

  易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

  易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

  易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

  易错点6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。

  易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

  易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

  三角形

  易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。

  易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

  易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

  易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。

  易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。

  易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

  易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。

  易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。

  易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。

  易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。

  易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

  四边形

  易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。三角形的稳定性与四边形不稳定性。

  易错点2:平行四边形注意与三角形面积求法的区分。平行四边形与特殊平行四边形之间的转化关系。

  易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。对角线将四边形分成面积相等的四部分。

  易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。

  易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。矩形与正方形的折叠。

  易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。

  易错点7:梯形问题的主要做辅助线的方法

  圆

  易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。

  易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。

  易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。

  易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况。

  易错点5:与圆有关的位置关系把握好d 与R和R+r,R-r 之间的关系以及应用上述的方法求解。

  易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角,90 度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。

  易错点7:几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。

  对称图形

  易错点1:轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。

  易错点2:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。

  易错点3:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。

  统计与概率

  易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。

  易错点2:在从统计图获取信息时,一定要先判断统计图的准确性。不规则的统计图往往使人产生错觉,得到不准确的信息。

  易错点3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。

  易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。

  易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率。

  易错点6:平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。加权平均数的权可以是数据、比分、百分数还可以是概率(或频率)。

  易错点7:求概率的方法:

  (1)简单事件。

  (2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值。

  (3)复杂事件求概率的方法运用频率估算概率。

  易错点8:判断是否公平的方法运用概率是否相等,关注频率与概率的整合。

    4524843