学习啦>学习方法>初中学习方法>初三学习方法>九年级数学>

初三数学上册知识点

淑航分享

  对于数学的学习,你有什么好方法呢?下面是学习啦小编为大家收集整理的初三数学上册知识点,相信这些文字对你会有所帮助的。

  初三数学上册知识点(一)

  直线(Straightline)是几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。或者定义为:曲率最小的曲线(以无限长为半径的圆弧)。

  从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

  求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。

  在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

  空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。在欧几里得几何学中,直线只是一个直观的几何对象。在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。

  在非欧几何中直线指连接两点间最短的线,又称短程线。

  方向向量:截取直线l上两点A(l,n,0)和B(k+l,m+n,1)方向向量为:AB=(k,m,1)

  初三数学上册知识点(二)

  补角的性质:同角或等角的补角相等。

  它包括以下两方面的内容:

  1.同角的补角相等。即:若∠A+∠B=180°,∠A+∠C=180°,则∠C=∠B。

  2.等角的补角相等。即:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则∠C=∠B。补角与余角的区别

  1.定义有些不同

  如果两个角的和是一个平角,那么这两个角叫互为补角。其中一个角叫做另一个角的补角 。

  ∠A +∠C=180°即:∠C的补角=180°-∠C;∠A的补角=180°-∠A 。

  如果两个角的和是一个直角,那么称这两个角互为余角,简称互余。其中一个角是另一个角的余角。

  ∠A +∠C=90°即:∠C的余角=90°-∠C ;∠A的余角=90°-∠A。

  2.计算方法不同

  补角:180度减去这个角的度数;

  余角:90度减去这个角的度数。

  初三数学上册知识点(三)

  根据等腰三角形的对称性还应有如下重要的性质,虽在证明中不能直接引用,但对于填空、选择则可直接运用,并且这些性质对今后的推理证明都有非常重要的作用。

  等腰三角形是一种特殊三角形,它除具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应 用更广泛。因此,我们有必要把这部分内容学得更扎实些。

  等腰三角形的重要性质:

  ①等腰三角形的两底角相等。这一性质是今后论证两角相等的常用依据之一。

  ②等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(“三合一”)。这一性质是今后论证两条线段相等,两角相等及两直线垂直的重要依据。

  初三数学上册知识点(四)

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

  2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

  5.常数项:不含字母的项叫做常数项。

  6.多项式的排列

  (1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

  (2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  7.多项式的排列时注意:

  (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:

  a.先确认按照哪个字母的指数来排列。

  b.确定按这个字母向里排列,还是向外排列。

  (3)整式:

  单项式和多项式统称为整式。

  8. 多项式的加法:

  多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

  9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

  10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

    356473