高二数学寒假练习一
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科,下面是学习啦小编给大家带来的高二数学寒假练习一,希望对你有帮助。
高二数学寒假练习
1.如图所示,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形, ,M为PC上一点,且PA∥平面BDM.
(1)求证:M为PC中点;
(2)求平面ABCD与平面PBC所成的锐二面角的大小.
2.如图,平面 平面ABC, 是等腰直角三角形,AC =BC= 4,四边形ABDE是直角梯形,BD∥AE,BD BA, , ,求直线CD和平面ODM所成角的正弦值.
3.如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD, AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.
(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
4.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(1)证明:AC⊥B1D;
(2)求直线B1C1与平面ACD1所成角的正弦值.
5.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点, AA1=AC=CB=22AB.
(1)证明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
6.如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,C是 的中点,D为AC的中点.
(1)证明:平面POD⊥平面PAC;
(2)求二面角B-PA-C的余弦值.
7.如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1-DN-M的大小为θ.
(1)当θ=90°时,求AM的长;
(2)当cos θ=66,求CM的长.
8.四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.
(1)求AC1的长; (2)求BD1与AC夹角的余弦值.
高二数学学习方法
做题之后加强反思,做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:“有钱难买回头看”。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。所以要把自己学到的知识合理地系统地组织起来,要总结反思,这样高中数学水平才能长进。
积累高中数学资料随时整理,要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,数学复习资料才能越读越精,一目了然。
配合老师主动学习,高一新生的学习主动性太差是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知做作业是绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一 一具体指明。因此,高中新生必须提高自己学习数学的主动性。准备向将来的大学生的学习方法过渡。
合理规划步步为营,高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的数学学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。
看了“高二数学寒假练习一”的人还看了: