高一数学的学习方法及特点
今天小编给大家讲讲高一数学的学习方法及特点,希望可以帮助到大家。
一、高中数学与初中数学特点的变化。
1、数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很\\\"玄\\\"。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2、思维方法向理性层次跃迁。
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,即使是思维非常灵活的平面几何问题,也对线段相等、角相等分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,正如上节所述,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的事,这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维,学会用辩证的方法的来分析分析问题和解决问题.
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的"量"上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这就要求第一,要做好课后的复习工作,记牢大量的知识;第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中;第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好。因此要学会对知识结构进行梳理,形成板块结构,实行"整体集装",如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法;第四,要多做总结、归类,建立主体的知识结构网络。
4.数学思想方法应用的范围和层次的进一步提高.
在初中,对一些常用的数学思想方法如数形结合、分类讨论、函数与方程、抽象概括、化归、数形结合、数学模型、归纳猜想、分类、类比、特殊化、演绎、完全归纳法、反证法、换元法、待定系数法、配方法。从中可以看出,中学数学中确实蕴含了丰富的数学思想方法...等等的认识和应用还是初浅的,较低水平的.而在高中,将进一步要求学生更加自觉地、自动地、经常地运用这些数学思想方法来解决问题。
二、不良的学习状态。
1、学习习惯因依赖心理而滞后。
初中生在学习上的依赖心理是很明显的。
第一,为提高分数,初中数学教学中教师将各种题型都一一罗列,学生依赖于教师为其提供套用的"模子";
第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的"模子"没有了,家长辅导的能力也跟不上了,由"参与学习"转入"督促学习"。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到"门道"。
2、思想松懈。
有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,而且有的可能还是重点中学里的重点班,因而认为读高中也不过如此,高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的同学是大错特错的。因为在我们广州市可以说是普及了高中教育,因此中考的题目并不具有很明显的选拨性,同学们都很容易考得高分。但高考就不同了,目前我们国家还不可能普及高等教育,高等教育可以说还是属于一种精英教育,只能选拨一些成绩好的同学去读大学,因此高考的题目具有很强的选拨性,如果心存侥幸,想在高三时再发奋一、二个月就考上大学,那到头来你会后悔莫及的。同学们不妨打听打听现在的高三,有多少同学就是因为高一、二不努力学习,现在临近高考了,发现自己缺漏了很多知识而而焦急得到处请家教。
3、学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
4、不重视基础。一些\\\"自我感觉良好\\\"的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的\\\"水平\\\",好高骛远,重\\\"量\\\"轻\\\"质\\\",陷入题海。到正规作业或考试中不是演算出错就是中途\\\"卡壳\\\"。
5、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法,实根分布与参变量的讨论,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。
三、科学地进行学习。
高中学生仅仅想学是不够的,还必须"会学",要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。
1、培养良好的学习习惯。反复使用的方法将变成人们的习惯。什么是良好的学习习惯?良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动我们主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前自学是上好新课,取得较好学习效果的基础。课前自学的功能主要有:
①初步了解新课内容,加强听课的目标性;
②了解教材中重点难点之所在,加强听课的针对性;
③不仅能培养自学能力;
④提高学习新课的兴趣,掌握学习的主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
预习六诀:"读、查、思、比、记、练"
一、读
读:就是阅读课文,学生要逐字逐句地阅读下一节课的授课内容,弄清中心问题,明确目的要求,力求了解新知识的基本结构(如定义、定理、解题方法等),从总体上作概要性把握。
二:查
数学知识连续性强,前面的概念不理解,后面的课程无法学下去。预习的时候发现学过的概念不明白,不清楚的,一定要在课前查阅有关内容搞清楚,力争经过自查不留问题。
三:思
学起于思,思源于疑,对所预习的内容要多问几个为什么?从引入方法到概念的和外延,从证题的方法到证题的依据等。预习时应思考:这一节的重点和难点是什么?概念,定理,公式有什么含义?有什么条件?公式如何运用(正用,逆用,变用)。数学课本上有大量的公式,不管有无推导过程,学生预习的时候应当暂放下课本,思考如何推导对照,或在课堂上和教师推导的过程相对照,以便发现自己有无推导错的地方。对于课本的例题,也尝试先做一做,再与课本的解答对照,思考这个问题有没有其他的解法或更简捷的做法(一题多解),如此既是自己在独立地分析问题和解决问题,又是在检查自己的学习情况。一般地,公式推导不下去或推导错误,例题不会做或做错,是由于自己的知识准备不够,要么是学过的忘记了,要么是有些内容自己还没有学过,只要设法补上,自己也就进步了。总之,预习的时候要多思考,要学会质疑.
四:比
比的含义,是对照阅读,把该知识与有关知识的相同点,类似和差别找出,并纳入相应的知识链中。如学生在学了等差数列的定义,通项公式和前几项求和公式等,在预习等比数列这块内容时,可类别学习。从两种数列定义可看出,等差数列与等比数列的区别是差(和)转化为比(积),两种数列,可用表格方式对比。在比较中熟悉两种数列的特点,加强结构的记忆。
五:记
记指做好预习笔记,做预习笔记有助于提高预习的效果。简短的可以直接在书上圈画,批注,难点、疑点及复杂的内容则要写在笔记本上。对于在预习中,遇到不懂的地方,要结合新旧知识进行纵横分析,思考,若寻求出答案的,可把答案记下来,上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。若想不出答案的,也要把问题记下来,待老师讲课时,再听其所以然。
六:练
在预习过程中,动手写一写,做一做,概念是否明白,方法是否掌握,可通过练习进行自我检测。数学课本上的练习题都是为巩固所学的知识而出的。预习中可以试做那些习题,之所以说试做,是因为并不强调定要做对,而是用来检验自己预习的效果。预习效果好,一般书后所附的练习是可以做出来的。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
(4)及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由"懂"到"会。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由"会"到"熟"。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由"熟"到"活"。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由"活"到"悟"。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
2、循序渐进,防止急躁。
由于同学们年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣。有的同学想靠几天"冲刺"一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。同学们要知道,学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
3、注意研究学科特点,寻找最佳学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究\\\"活\\\",只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的"由薄到厚"和"由厚到薄"的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
4.树立以培养数学思维能力为核心的数学学习观。
5.培养浓厚的数学学习兴趣
解读数学学习动机和学习兴趣.
(1).数学学习动机是将数学学习的愿望变为数学学习行为的心理动因,是引发、维持与导向数学学习行动的力量,是直接推动进行数学学习以达到某种目的的内部动力.它产生于数学学习的需要.
(2).数学学习动机的分类:
外加动机:奖惩、督查、竞赛、成绩等。
内在动机:好奇心、求知欲、兴趣、自身发展与社会需要。
成就动机:认知内驱力:自我提高内驱力;附属内驱力(表扬、赞许等)
(3)数学学习兴趣:学生的情感和态度在数学学习活动中的选择与倾向。是数学学习内部动机在数学学习活动中体现。
(4)数学学习兴趣的分类:
直接兴趣:数学学习活动与数学内容本身所引起的兴趣。
间接兴趣:数学学习活动的结果所引起的兴趣。如学习的目标:就业与升学;学习的环境:老师上课有风趣;同学们学习数学的风气与相互促进等。
(5)端正学习态度,明确学习目的,化间接兴趣为直接兴趣。