考研数学的复习攻略
万物萌发的春季,辛勤的考研学子也开始为梦想耕种。春耕有方法,复习有讲究。如何让复习有事半功倍的效果?下面给大家分享一些关于考研数学的复习攻略,希望对大家有所帮助。
考研数学的复习攻略
第一个阶段是基础阶段。
这个阶段的长短应该根据自己的情况来实施,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。但是要提醒大家,这个基础阶段的时间不能太长,不能到了十月、十一月份还在打基础,那这样的话,复习的效率就太低了,我们建议基础再差的同学也要尽量在五、六月份把这个教材的打基础复习的阶段做完。
第二个阶段是强化阶段。
看一些提高类的辅导书和针对考研的这种考试参考书,按照题型分类。教材和参考书在复习上是有差异的,教材是不跨章节的,也就是你在看第六章的时候,例题也好,习题也好,不可能用到第六章以后的知识,考研的题是同学们上完全部课程,都学完了才来考试的,所以仅看教材的话就有些不足,难以提高自己的水平。而参考书已经将所有知识进行了综合整理,对于考研这个层次的数学知识来说哪些是重点、哪些是难点它都做了归纳总结,同学们要多花时间充分利用参考书复习透彻。
第三个阶段是冲刺阶段。
通过强化阶段的复习,考生已经达到了一定的水平,那么怎么样保持这个水平呢?通过做适当的题,比如历年真题或是做模拟题,这个叫做总复习,或者说是冲刺的阶段。这个阶段什么时候开始是同学们关心的,一般来说,考生可以在十月份中旬以后,甚至十一月份以后作为准备冲刺的阶段。这个阶段大家必须要做10到15年的真题,先做第一遍,每天上午利用3个小时的时间,完全模拟真正的考试,完整的做一套卷子,这样下午去总结和归纳,第二天做第二套,一直下午,基本半个月一遍结束,然后重新开始再做第二遍,也从第一套开始,下午总结的时候看看是不是第一遍错的地方第二遍纠正过来了,对于两遍都错的地方要特别留意。真题做完之后必须要做5套模拟题,以及调整心理和生理的备考状态,在真正考试时,让自己充分发挥出来。
考研数学复习方法
一、找关键词
高数、线代和概率中有很多概念、性质和定理。其中一些很长,使考生难以把握关键点。这时考生可以试着找找关键词。一旦找到合适的关键词,长长的知识点的核心信息就浓缩在几个关键词中。
以二次型为例,定义比较长,且字母较多。如果我们用“二次齐次多项式”作为关键词,那掌握起来就方便多了。
二、用自己的话概括
有些内容的关键词不好找,这时用自己的话概括是个不错的选择。举例如下:
高数极值和拐点的概念可以概括为:极值即局部的最值;拐点即凹凸性的分界点。
线性代数向量部分的几个定理可以概括为:整体无关推部分无关;向量组无关推延伸组无关;一个线性无关的向量组不能由个数比它少的向量组线性表出。
三、梳理知识结构
梳理知识结构有助于考生在头脑中形成知识体系,进而把书变薄。
以高数第一章为例,第一章内容为函数、极限与连续,函数包括定义、运算、性质和分类;极限包括定义、性质和计算;连续包括连续、间断点和闭区间上连续函数的性质。每一部分内容还可以展开。
四、做题而非看题
有考生习惯于看题(题目和解析),可能是觉得自己基础薄弱,多看看,把基础打牢后再动手做题;也可能是懒,觉得做题费劲,而看题舒服些。
不能说看题没有收获,见多识广后总对思路有些启发。但相对于做题来说,看题的效果要小很多。从主动性上看,看还是一个被动接受的过程,自己的思路被写解析的人的思路牵引;而做题则是主动思考的过程。从经验上看,相信考生都有这样的经验:一道题不会做,看解析会了,合上书,自己做还是感觉磕磕绊绊。
效果差意味着没有把握到这道题的关键,没有掌握好解法,也就谈不上把书变薄了。
五、对照考纲做题
教材的内容要用考纲筛选,习题也有必要用考纲筛选,以使复习更有针对性,也顺带把任务变少,把书变薄了。
六、舍得的智慧
有考生抱着“全面复习”的理念,坚持把每个考点、每道课后习题都搞定。精神可嘉,但并不可行:有一些考点偏理论,且相对独立(如大数定律和中心极限定理),想在基础阶段理解得很透彻有一定难度,与其花大量时间与其较劲,不如把精力用在其它重要考点上,把这部分内容往后放,甚至到强化阶段再看也不迟;有一些偏概念、偏证明的题,思考再三也搞不定,不妨先标出来,暂且搁置,把主要精力用在偏计算的题目上,之后再杀个回马枪!
面面俱到容易陷入到细节而不能自拔,舍掉细枝末节方能得到关键环节。
考研复习需要勤奋,也需要方法,希望以上招数能助考生一臂之力,也希望考生以上面的“砖”总结出更适合自己的“玉”,进而在考研之路勇猛精进!
考研数学的口诀记忆技巧
一、正态方和卡方(x2)出,卡方相除变F
二、若想得到t分布,一正n卡再相除
第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成F分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到分布。
参数的矩估计量(值)、最大似然估计量(值)也是经常考的。很多同学遇到这样的题目,总是感觉到束手无策。题目中给出的样本值完全用不上。
其实这样的题目非常简单。只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。矩法的基本思想就是用样本的阶原点矩作为总体的阶原点矩。矩估计法的解题思路是:
(1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。
(2)如果有两个未知参数,那么除了要用一阶矩来估计外,还要用二阶矩来估计。因为两个未知数,需要两个方程才能解出。解出未知参数,就是矩估计量。考纲上只要求掌握一阶、二阶矩。
最大似然估计法的最大困难在于正确写出似然函数,它是根据总体的分布律或密度函数写出的,我们给大家一个口诀,方便大家记忆。
三、样本总体相互换,矩法估计很方便
四、似然函数分开算,对数求导得零蛋
第一条口诀的意思是用样本的矩来替换总体的矩,就可以算出参数的矩估计第二个口诀的意思是把似然函数中的未知参数当成变量,求出其驻点,在具体计算的时候就是在似然函数两边求对数,然后求参数的驻点,即为参数的最大似然估计。
考研数学的复习攻略相关文章:
★ 考研数学复习指导