学习啦>新闻资讯>学习资讯>

如何快速找准高中数学题的解题突破口

睿柠分享

  许多考生在解答数学题时都会遇到一定的困难。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解析的突破口,但做着做着就走不下去了。下面是小编分享的快速找准数学题的突破口的方法,一起来看看吧。

  快速找准数学题的突破口的方法

  一、数学大题如何找突破口

  从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想求得怎样的结果,必须要做什么才能将未知转化成已知,一步一步逐渐将问题彻底解决。高三网小编提示,事实上在不等式证明中采用的“分析法”就是这种思维的充分体现。

  二、数学公式变形

  一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟。高三网小编提示,其实数学解题的每一步推理和运算,实质都是转换(变形),目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体。

  三、总结规律

  掌握数学大题解题方法很重要,其实题目再难也逃不了课本揭示的思维方法及规律。回归课本不是简单的梳理知识点。高三网小编提示,课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在规律就去盲目解题,就和通过题海战术去提高分数一样,结果是题目做了很多,却总也不见成效,最终只能留在题目的表面,思维水平得不到有效果提高。

  想要做好数学大题,首先要对自己充满信心,在复习过程中逐渐提炼出解题的关键点。到了考场上在有限的时间里,解题时如果出现思维断路,就拿出笔把图一画,慢慢将抽象的问题与数形结合起来。

  高考数学必知的答题技巧

  1、调整好状态,控制好自我。

  (1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

  (2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。

  2、通览试卷,树立自信。

  刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

  3、提高解选择题的速度、填空题的准确度。

  数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

  4、审题要慢,做题要快,下手要准。

  题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

  找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

  5、保质保量拿下中下等题目。

  中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

  6、要牢记分段得分的原则,规范答题。

  会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

  难题要学会

  (1)缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。

  (2)跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一“卡壳处”。如果时间不允许,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。今年仍是网上阅卷,望广大考生规范答题,减少隐形失分。

  高考数学型答题方法

  1.函数或方程或不等式的题目,先直接思考后建立三者的联系.首先考虑定义域,其次使用“三合一定理”.

  2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

  3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质.如所过的定点,二次函数的对称轴或是……;

  4.选择与填空中出现不等式的题目,优选特殊值法;

  5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

  6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

  7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

  8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

  9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

  10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

  11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

  12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

  13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

  14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

  15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成.


猜你感兴趣:

1.高中数学概率独立概率练习题及答案

2.高中数学九大解题技巧

3.高中数学的大题的解题的技巧详解

4.高中数学的大题的解题技巧分析

5.高中数学的解题的方法和学好数学的技巧

    3788571