学习啦——考试网>学历类考试>考研频道>考研备考>考研复习>

2018考研数学高等数学复习方法和重点

慧媛分享

  高数复习是考研数学复习的重头戏,对于大部分考研的同学来说,高等数学是相对较难的课程,既然那么考试这么难,那么肯定还有一些复习的方法的。今天小编给大家整理了2018考研数学高等数学复习方法知识,希望对大家有所帮助。

  考研数学之高等数学复习方法

  第一、要将数学基础备考进行到底

  数学150分,基础性的题目占到70%,也就是105分,这分数对于考生来讲是非常重要的,只要大家把基本概念、性质、公式和定理以及基本解题方法掌握了,这部分分数还是比较容易能拿到手的。但是复习到现在,很多考生已经把基本知识点抛之脑后了,一味地在做题,甚至只是在看题。但是我们必须清楚,不管做多少题,考场上都不会遇见你做过的题目,我们做题的目的是巩固知识点,检测对知识点的掌握程度、复习的效果,重要的是知识点本身,万变不离其宗,考场上题目无论如何变化都离不了知识点,所以如果你对基础知识还没用掌握,就一定要对照考试大纲对基本概念、基本理论和基本方法准确把握,或者对基础班的讲义进行复习。因为只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。

  第二、要处理好全面和重点的关系,不同层次的考生,要求不同

  考研预报名后,绝大部分学生已经确定好了院校和专业,那么数学这一学科到底要考多少分基本上也是确定的。如果考生的分数要求比较高,130、140以上,那么在掌握常考的题型和解题方法的基础上,对照考试大纲对考研不常考的内容也要进行复习,比如说差分方程,只对数三同学做要求,这部分内容虽然已很久没考查,但是这确实是考试大纲上要求的内容,也要复习到。况且这部分内容只要是花半个小时就可以掌握的,可以与二阶常系数线性微分方程的解法对比记忆。

  如果考生的分数要求并不高,只要100-120分就可以的话,还是要对照暑期强化班的讲义重点把常考题型和解题方法掌握好,一些不常考的内容可以适当地放弃,比如说数一的估计的一致性、假设检验。

  第三、重视真题,总结题型,熟练掌握常见的解题方法和技巧

  根据对历年真题的研究,我们发现每年的试卷高等数学内容都有较大的重复率,所以一定要重视对真题的研习,真题至少要做两遍,第一遍按年份做,第二份按章节做。通过做真题,去总结常考题型,掌握常见的解题方法和技巧,对于暑期上过强化班的同学来讲,这部分工作就不需要自己去做了,只需要把课上老师讲的解题方法进行练习。除此之外,对于那些具有很强的综合性、灵活性的题,要特别注重解题思路和技巧的培养。

  第四、提高解题速度和准确度

  计算能力是考研考查的一项主要能力,考研试题计算题的比例也占到80%以上,这不仅意味着要求学生要通过运算得到正确的答案,并且要在规定的3小时之内完成全部的23道题。这就要求考生在复习的时候要提高解题速度和准确率,除了一些基本的解题方法也要掌握一些技巧,从而缩短答题时间。另外,考研试卷的批改是按步骤给分的,一些重要步骤都会有相应的分数,答题规范,这是取得高分的保证,所以做题过程中要养成习惯,答题规范,防止由于解题格式、过程的不规范而失分,保证会做的题不出错。

  2018考研高等数学备考重点

  一.函数、极限与连续

  求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

  二.一元函数微分学

  求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

  三.一元函数积分学

  计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

  这一部分主要以计算应用题出现,只需多加练习即可。

  四.向量代数和空间解析几何

  计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

  五.多元函数的微分学

  判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

  六.多元函数的积分学

  二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

  七.微分方程

  求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

  总之,数学要想考高分,考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要!

  2018考研数学数理统计的口诀

  正态方和卡方(x2)出,卡方相除变F;

  若想得到t分布,一正n卡再相除;

  第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成F分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到分布。

  参数的矩估计量(值)、最大似然估计量(值)也是经常考的。很多同学遇到这样的题目,总是感觉到束手无策。题目中给出的样本值完全用不上。

  其实这样的题目非常简单。只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。矩法的基本思想就是用样本的阶原点矩作为总体的阶原点矩。估计矩估计法的解题思路是:

  (1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。

  (2)如果有两个未知参数,那么除了要用一阶矩来估计外,还要用二阶矩来估计。因为两个未知数,需要两个方程才能解出。解出未知参数,就是矩估计量。考纲上只要求掌握一阶、二阶矩。

  最大似然估计法的最大困难在于正确写出似然函数,它是根据总体的分布律或密度函数写出的,我们给大家一个口诀,方便大家记忆。

  样本总体相互换,矩法估计很方便;

  似然函数分开算,对数求导得零蛋;

  第一条口诀的意思是用样本的矩来替换总体的矩,就可以算出参数的矩估计;第二个口诀的意思是把似然函数中的未知参数当成变量,求出其驻点,在具体计算的时候就是在似然函数两边求对数,然后求参数的驻点,即为参数的最大似然估计。

猜你感兴趣:

1.考研数学一复习经验

2.2018考研复习计划安排和建议

3.2018高考数学复习必看的答题技巧

4.2018高考数学复习的八个诀窍

5.2018考研数学复习书籍推荐和计划

6.2018考研数学解题技巧